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Abstract

Assessing the capabilities and limitations of
large language models (LLMs) has garnered
significant interest, yet the evaluation of mul-
tiple models in real-world scenarios remains
rare. Multilingual evaluation often relies on
translated benchmarks, which typically do not
capture linguistic and cultural nuances present
in the source language. This study provides an
extensive assessment of 24 LLMs on real world
data collected from Indian patients interacting
with a medical chatbot in Indian English and 4
other Indic languages. We employ a uniform
Retrieval Augmented Generation framework to
generate responses, which are evaluated using
both automated techniques and human evalu-
ators on four specific metrics relevant to our
application. We find that models vary signifi-
cantly in their performance and that instruction
tuned Indic models do not always perform well
on Indic language queries. Further, we empiri-
cally show that factual correctness is generally
lower for responses to Indic queries compared
to English queries. Finally, our qualitative work
shows that code-mixed and culturally relevant
queries in our dataset pose challenges to evalu-
ated models.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive proficiency across various do-
mains. Nonetheless, their full spectrum of capabil-
ities and limitations remains unclear, resulting in
unpredictable performance on certain tasks. Ad-
ditionally, there is now a wide selection of LLMs
available. Therefore, evaluation has become cru-
cial for comprehending the internal mechanisms of
LLMs and for comparing them against each other.

Despite the importance of evaluation, significant
challenges still persist. Many widely-used bench-
marks for assessing LLMs are contaminated (Ahuja

“Work done during an internship at Microsoft
"Equal Advising

et al., 2024; Oren et al., 2024; Xu et al., 2024),
meaning that they often appear in LLM training
data. Some of these benchmarks were originally
created for conventional Natural Language Process-
ing tasks and may not fully represent current prac-
tical applications of LLMs (Conneau et al., 2018;
Pan et al., 2017). Recently, there has been growing
interest in assessing LLMs within multilingual and
multicultural contexts (Ahuja et al., 2023, 2024;
Faisal et al., 2024; Watts et al., 2024; Chiu et al.,
2024). Traditionally, these benchmarks were devel-
oped by translating English versions into various
languages. However, due to the loss of linguistic
and cultural context during translation, new bench-
marks specific to different languages and cultures
are now being created. However, such benchmarks
are few in number, and several of the older ones are
contaminated in training data (Ahuja et al., 2024;
Oren et al., 2024). Thus, there is a need for new
benchmarks that can test the abilities of models in
real-world multilingual settings.

LLMs are employed in various fields, including
critical areas like healthcare. Jin et al. (2024) trans-
late an English healthcare dataset into Spanish, Chi-
nese, and Hindi, and demonstrate that performance
declines in these languages compared to English.
This highlights the necessity of examining LLMs
more thoroughly in multilingual contexts for these
important uses.

In this study, we conduct the first comprehensive
assessment of multilingual models within a real-
world healthcare context. We evaluate responses
from 24 multilingual and Indic models using 750
questions posed by users of a health chatbot in
five languages (Indian English and four Indic lan-
guages). All the models being evaluated function
within the same RAG framework, and their out-
puts are compared to doctor-verified ground truth
responses. We evaluate LLM responses on four
metrics curated for our application, including fac-
tual correctness, semantic similarity, coherence,



and conciseness and present leaderboards for each
metric, as well as an overall leaderboard. We use
human evaluation and automated methods (LLMs-
as-a-judge) to compute these metrics by compar-
ing LLM responses with ground-truth reference
responses or assessing the responses in a reference-
free manner.

Our results suggest that models vary significantly
in their performance, with some smaller models
outperforming larger ones. Factual Correctness is
generally lower for non-English queries compared
to English queries. We observe that instruction-
tuned Indic models do not always perform well
on Indic language queries. Our dataset contains
several instances of code-mixed and culturally-
relevant queries, which models sometimes struggle
to answer. The contributions of our work are as
follows:

* We evaluate 24 models (proprietary as well
as open weights) in a healthcare setting using
queries provided by patients using a medical
chatbot. This guarantees that our dataset is
not contaminated in the training data of any
of the models we evaluate.

We curate a dataset of queries from multilin-
gual users that spans multiple languages. The
queries feature language typical of multilin-
gual communities, such as code-switching,
which is rarely found in translated datasets,
making ours a more realistic dataset for model
evaluation.

* We evaluate several models in an identical
RAG setting, making it possible to compare
models in a fair manner. The RAG setting is a
popular configuration that numerous models
are being deployed in for real-world applica-
tions.

We establish relevant metrics for our applica-
tion and determine an overall combined metric
by consulting domain experts - doctors work-
ing on the medical chatbot project.

* We perform assessments (with and without
ground truth references) using LILM-as-a-
judge and conduct human evaluations on a
subset of the models and data to confirm the
validity of the LLM assessment.

2 Related Works

Healthcare Chatbots in India Within the Indian
context, the literature has documented great diver-
sity in health seeking and health communication
behaviors based on gender (Das et al., 2018), vary-
ing educational status, poor functional literacy, cul-
tural context (Islary, 2018), stigmas (Wang et al.)
etc. This diversity in behavior may translate to
people’s use of medical chatbots, which are in-
creasingly reaching hundreds of Indian patients at
the margins of the healthcare system (Mishra et al.,
2023). These bots solicit personal health informa-
tion directly from patients in their native Indic lan-
guages or in Indic English. For example, (Ramjee
et al., 2024) find that their CataractBot deployed in
Bangalore, India yields patient questions on topics
such as surgery, preoperative preparation, diet, exer-
cise, discharge, medication, pain management, etc.
Mishra et al. (2023) find that Indian people share
“deeply personal questions and concerns about sex-
ual and reproductive health” with their chatbot
SnehAl. Yadav et al. (2019) find that queries to
chatbots are “embedded deeply into a communi-
ties myths and existing belief systems” while (Xiao
et al., 2023) note that patients have difficulties find-
ing health information at an appropriate level for
them to comprehend. Therefore, LLMs powering
medical chatbots in India and other Low and Mid-
dle Income Countries are challenged to respond
lucidly to medical questions that are asked in ways
that may be hyperlocal to patient context. Few
works have documented how LLMs react to this
linguistic diversity in the medical domain. Our
work begins to bridge this gap.

Multilingual and RAG evaluation Several pre-
vious studies have conducted in-depth evaluation
of Multilingual capabilities of LLMs by evaluating
across standard tasks (Srivastava et al., 2022; Liang
et al., 2023; Ahuja et al., 2023, 2024; Asai et al.,
2024; Lai et al., 2023; Robinson et al., 2023), with
a common finding that current LLLMs only have a
limited multilingual capacity. Other works (Watts
et al., 2024; Leong et al., 2023) include evaluating
LLMs on creative and generative tasks. Salemi and
Zamani (2024) state that evaluating RAG models
require a joint evaluating of the retrival and gen-
erated output. Recent works such as Chen et al.
(2024); Chirkova et al. (2024) benchmark LL.Ms
as RAG models in bilingual and multilingual se-
tups. Lastly, several tools and benchmarks have
also been built for automatic evaluation of RAG,



even in medical domains (Es et al., 2024; Tang and
Yang, 2024; Xiong et al., 2024a,b), and we refer the
readers to Yu et al. (2024) for such a comprehensive
list and survey.

LLM-based Evaluators With the advent of
large-scale instruction following capabilities in
LLMs, automatic evaluations with the help of these
models is being preferred (Kim et al., 2024a,b; Liu
et al., 2024; Shen et al., 2023; Kocmi and Feder-
mann, 2023). However, it has been shown that it is
optimal to assess these evaluations in tandem with
human annotations as LLMs can provide inflated
scores (Hada et al., 2024b,a; Watts et al., 2024).
Other works (Zheng et al., 2023; Watts et al., 2024)
have employed GPT-4 alongside human evalua-
tors to leaderboards to assess other LLMs. Ning
et al. (2024) proposed an innovative approach using
LLM:s for peer review, where models evaluate each
other’s outputs. However, a recent study by Dodda-
paneni et al. (2024) highlighted the limitations of
LLM-based evaluators, revealing their inability to
reliably detect subtle drops in input quality during
evaluations, raising concerns about their precision
and dependability for fine-grained assessments. In
this work, we use LLM-based evaluators both with
and without ground-truth references and also use
human evaluation to validate LLM-based evalua-
tion.

3 Methodology

In this study, we leveraged a dataset collected from
a deployed medical chatbot. Here, we provide an
overview of the question dataset, the knowledge
base employed for answering those questions, the
process for generating responses, and the evalua-
tion framework.

3.1 Data

The real-world test data was collected by our col-
laborators as part of an ongoing research effort that
designed and deployed a medical chatbot, hereafter
referred to as HEALTHBOT, to patients scheduled
for cataract surgery at a large hospital in urban In-
dia. An Ethics approval was obtained from our
institution prior to conducting this work, and once
enrolled in the study and consent was obtained,
both the patient and their accompanying family
member or attendant were instructed on how to use
HEALTHBOT on WhatsApp. Through this instruc-
tional phase, they were informed that questions
could be asked by voice or by text, in one of 5

languages - English, Hindi, Kannada, Tamil, Tel-
ugu. The workflow of chatting with HEALTHBOT
was as follows: Patients sent questions through
the WhatsApp interface to HEALTHBOT. Their
questions were transcribed automatically (using a
speech recognition system) and translated (using
an off-the-shelf translator) into English if needed,
after which GPT-4 was used to to produce an initial
response by performing RAG on the documents
in the knowledge base (KB, see below). This ini-
tial response was passed to doctors who reviewed,
validated, and if needed, edited the answer. The
doctor approved answer is henceforth referred to
as the ground truth (GT) response associated with
the patient query.

Our evaluation dataset was curated from this
data by including all questions sent to HEALTHBOT
along with their associated GT response. Exclusion
criteria removed exact duplicate questions, those
with personally identifying information, and those
not relevant to health. Additionally, for this work,
we only consider questions to which the GPT-4
answer was directly approved by the expert as the
“correct and complete answer" without additional
editing on the doctors’ part. The final dataset con-
tained 749 question and GT answer pairs that were
sent in to HEALTHBOT between December 2023
to June 2024. In the pool, 666 questions were in
English, 19 in Hindi, 27 in Tamil, 14 in Telugu,
and 23 in Kannada. Note that, queries written in
the script of a specific language were classified as
belonging to that language. For code-mixed and
Romanized queries, we determined whether they
were English or non-English based on the matrix
language of the query.

The evaluation dataset consists of queries that (1)
have misspelled English words, (2) are code-mixed,
(3) represent non-native English, (4) are relevant to
the patient’s cultural context and (5) are specific to
the patient’s condition. We provide some examples
of each of these categories.

Examples of misspelled queries include ques-
tions such as “How long should saving not be done
after surgery?” where the patient intended to ask
about shaving, and “Sarjere is don mam?” which
the attendant used to inquire about the patient’s
discharge status. Instances of code mixing can be
seen in phrases like “Agar operation ke baad pain
ho raha hai, to kya karna hai?”” meaning “If there
is pain after the surgery, what should I do?” in
Hindi-English (Hinglish). Other examples include
“Can I eat before the kanna operation?” where



’

“kanna” means eye in Tamil, and “kanna operation’
is a well understood, common way of referring
to cataract surgery, and “In how many days can
a patient take Karwat?” where “Karwat” means
turning over in sleep in Hindi.

Indian English was used in a majority of the En-
glish queries, making the phrasing of questions dif-
ferent from what they would be with native English
speech. Examples are as follows - “Because I have
diabetes sugar problem I am worried much”, “Why
to eat light meal only? What comes under light
meal?” and “Is the patient should be in dark room
after surgery?” Taking a shower was commonly
referred to as “taking a bath”, and eye glasses
were commonly referred to as “goggles”, “spex’
or “spectacles”.

Culturally-relevant questions were also many in
number, for example questions about specific foods
were asked like “Can he take chapati, Puri etc
on the day of surgery?” and “Can I eat non veg
after surgery?” (“non-veg” is a term used in Indian
English to denote eating meat). Questions about
yoga were asked, like “How long after the surgery
should the Valsalva maneuver be avoided?” and
“Are there any specific yoga poses I can do?”. The
notion of a patient’s native place or village was
brought up in queries such as “If a person gets
operated here and then goes to his native place
and if some problem occurs what shall he do ?” or
“Can she travel by car with AC for 100 kms ?”.

’

3.2 Knowledge Base

The documents populating the knowledge base
(KB) were initially curated by doctors at the hos-
pital where HEALTHBOT was deployed. This con-
sisted of 12 PDF documents that were converted
into text files and manually error checked. The
documents included Standard Operating Provedure
manuals, standard treatment guidelines, consent
forms, frequently-asked-question documents, in-
surance information, etc. Following this initial
curation, doctors that were with HEALTHBOT were
able to select question-answer pairs to be added to
KB after the bot was deployed. In this manner, the
knowledge available to GPT-4 in the KB grew over
time. Therefore, every question that was asked by
patients was associated with a different version of
the KB being used for answer generation. This
detail was incorporated into our evaluation in order
to compare the verified ground truth data with the
generated response in an accurate manner. All KB
documents were chunked to a maximum length of

1000 tokens, and embedded in VectorDB' using
the TEXT-EMBEDDING-ADA-0022. Subsequently,
for each query, the top 3 most relevant chunks are
extracted, and the models are queried with this data.

3.3 Models

We chose 24 models including proprietary multilin-
gual models, as well as Open-weights multilingual
and Indic language models for our evaluation. A
full list of models can be found in Table 1.

3.4 Response Generation

We use the standard Retrieval-Augmented-
Generation (RAG) strategy to elicit responses from
all the models. Each model is asked to respond
the given query by extracting the appropriate
pieces of text from the knowledge-base chunks.
During prompting, we segregate the chunks
into RAWCHUNKS and KBUPDATECHUNKS
symbolizing the data from the standard sources,
and the KB updates. Then model is explicitly
instructed to prioritize the information from the
most latest sources, i.e. the KBUPDATECHUNKS
(if they are available). The exact prompt using
for generation is provided in Appendix X. Note
that each model gets the same RAWCHUNKS and
KBUPDATECHUNKS, which are also the same that
are given to the GPT-4 model in the HEALTHBOT,
based on which the GT responses are verified.

3.5 Response Evaluation

We used both human and automated evaluation to
evaluate the performance of models in the setup
described above. GPT-40° was employed as an
LLM evaluator. We prompted the model separately
to judge each metric, as Hada et al. (2024b,a) show
that individual calls reduce interaction and influ-
ence among and their evaluations.

3.5.1 LLM Evaluation

In consultation with domain experts working on the
HEALTHBOT, we curated metrics that are relevant
for our application. We limit ourselves to 3 classes
(Good - 2, Medium - 1, Bad - 0) for each metric, as
a larger number of classes could hurt interpretabil-
ity and lower LLM-evaluator performance. The
prompt used for each of our metrics are available in
Appendix A.2, and a general overview is provided
below.

"https://www. trychroma.com

Zhttps://platform.openai.com/docs/guides/

embeddings/embedding-models
Shttps://openai.com/index/hello-gpt-40/
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Languages

Models Tested Availability
GPT-4 All Proprietary
GPT-4o All Proprietary
microsoft/Phi-3.5-MoE-instruct All Open-weights
CohereForAl/c4ai-command-r-plus-08-2024 All Open-weights
Qwen/Qwen2.5-72B-Instruct All Open-weights
CohereForAl/aya-23-35B All Open-weights
mistralai/Mistral-Large-Instruct-2407 All Open-weights
google/gemma-2-27b-it All Open-weights
meta-llama/Meta-Llama-3.1-70B-Instruct All Open-weights
GenVRadmin/llama38bGenZ_Vikas-Merged All Indic
GenVRadmin/AryaBhatta-GemmaOrca-Merged All Indic
GenVRadmin/AryaBhatta-GemmaUltra-Merged All Indic
GenVRadmin/AryaBhatta-GemmaGenZ-Vikas-Merged All Indic
Telugu-LLM-Labs/Indic-gemma-7b-finetuned-sft-Navarasa-2.0 All Indic
ai4bharat/Airavata En, Hi Indic
Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1 En, Hi Indic
BhabhaAl/Gajendra-vO0.1 En, Hi Indic
manishiitg/open-aditi-hi-v4 En, Hi Indic
abhinand/tamil-llama-7b-instruct-v0.2 En, Ta Indic
abhinand/telugu-llama-7b-instruct-vO0. 1 En, Te Indic
Telugu-LLM-Labs/Telugu-Llama?2-7B-v0-Instruct En, Te Indic
Tensoic/Kan-Llama-7B-SFT-v0.5 En, Ka Indic
Cognitive-Lab/Ambari-7B-Instruct-v0.2 En, Ka Indic
GenVRadmin/Llamavaad En, Hi Indic

Table 1: List of models tested. “En” for English, “Hi” for Hindi, “Ka” for Kannada, “Ta” for Tamil, “Te” for Telugu,
and “All" refers to all the aforementioned languages. All Indic models are open-weights.

* FACTUAL CORRECTNESS (FC): As Doddapa-
neni et al. (2024) had shown that LLM-based
evaluators fail to identify subtle factual inaccu-
racies, we curate a separate metric to double-
check facts like dates, numbers, procedure and
medicine names.

¢ SEMANTIC SIMILARITY (SS): Similarly, we
formulate another metric to specifically anal-
yse if both the prediction and the ground-truth
response convey the same information seman-
tically, especially when the they are in differ-
ent languages.

¢ COHERENCE (COH): This metric evaluates if
the model was able to stitch together appropri-
ate pieces of information from the three data
chunks provided to yield a coherent response.

* CONCISENESS (CON): Since the knowledge
base chunks extracted and provided to the
model can be quite large, with important facts
embedded at different positions, we build this
metric to assess the ability of the model to
extract and compress all these bits of informa-
tion relevant to the query into a crisp response.

Among the metrics presented above, FACTUAL
CORRECTNESS and SEMANTIC SIMILARITY use

the GT response verified by doctors as a refer-
ence, while COHERENCE and CONCISENESS are
reference-free metrics. In order to arrive at a com-
bined score for each model, we asked two doc-
tors who collaborate on the HEALTHBOT to assign
weights to the first four metrics according to their
importance and used an average of the percentages
for each metric as the final coefficient to compute
the AGGREGATE (AGG). Both doctors gave the
maximum weight to FACTUAL CORRECTNESS fol-
lowed by SEMANTIC SIMILARITY while COHER-
ENCE and CONCISENESS were given lower and
equal weightage.

3.5.2 Human Evaluation

Following previous works (Hada et al., 2024b,a;
Watts et al., 2024), we augment the LLM eval-
uation with human evaluation and draw cor-
relations between the LLM evaluator and hu-
man evaluation for a subset of the models
(PHI-3.5-MOE-INSTRUCT, MISTRAL-LARGE-
INSTRUCT-2407, GPT-40, META-LLAMA-3.1-
70B-INSTRUCT, INDIC-GEMMA-7B-FINETUNED-
SFT-NAVARASA-2.0). These models were selected
based on results from early automated evaluations,
covering a range of scores and representing models
of interest.

The human annotators were employed by
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KARYA, a data annotation company and were all na-
tive speakers of Indian languages that we evaluated.
We selected a sample of 100 queries from English,
and all the queries from Indic languages for annota-
tion, yielding a total of 183 queries. Each instance
was annotated by one annotator for SEMANTIC
SIMILARITY between the model’s response and
the GT response provided by the doctor. The an-
notations began with a briefing about the task and
each of them was given a sample test task, and were
provided some guidance based on their difficulties
and mistakes. Finally, the annotators were asked to
evaluate the model response based on the metric*,
query, and ground-truth response on a scale of 0 to
2, similar to the LLM-evaluator.

4 Results

In this section, we present the outcomes of both
the LLM and human evaluations. We begin by
examining the average scores across all our metrics
including the combined metric for English queries,
followed by results for queries in other languages.
Next, we examine the ranking of models based on
scores given by human annotators and compare
these rankings based on scores provided by the
LLM evaluator. Lastly, we conduct a qualitative
analysis of the outcomes and describe noteworthy
findings.

4.1 LLM evaluator results

We see from Table 2 that for English, the best per-
forming models is the QWEN2.5-72B-INSTRUCT
model across all metrics. Note that it is expected
that GPT-4 performs well, as the ground truth re-
sponses are based on responses generated by GPT-
4. The PHI-3.5-MOE-INSTRUCT model also per-
forms well on all metrics, followed by MISTRAL-
LARGE-INSTRUCT-2407 and OPEN-ADITI-HI-V4,
which is the only Indic model that performs near
the top even for English queries. Surprisingly, the
META-LLAMA-3.1-70B-INSTRUCT model per-
forms worse than expected on this task, frequently
regurgitating the entire prompt that was provided.
In general, all models get higher scores on concise-
ness and many models do well on coherence.

For the non-English queries, which are far fewer
in number compared to English (Tables 3, 5, 6,
4 in Appendix A.1), we find that models such as
AYA-23-35B perform near the top for Hindi along

*The formulation and wording of the metric was slightly
simplified to the annotators to better understand it.

with proprietary and large open weights models
such as QWEN2.5-72B-INSTRUCT and MISTRAL-
LARGE-INSTRUCT-2407, outperforming many of
the fine-tuned Indic LLMs. The GEMMA-2-27B-IT
model also outperforms many Indic models in the
Indic setting, compared to its performance in En-
glish. This shows that some instruction-tuned Indic
LLMs may not perform well in the RAG setting.
We also find that compared to English, models get
lower values on FC on Indic queries, which is con-
cerning as it is rated as the most important metric
by doctors.

4.2 Comparison of human and LLM
evaluators

We perform human evaluation on five models on
the SEMANTIC SIMILARITY (SS) task and com-
pare human and LLM evaluation by inspecting the
ranking of the models in Appendix A.3. We find
that for all languages except Telugu, we get iden-
tical rankings of all models. Additionally, we also
measure the Percentage Agreement (PA) between
the human and LLM-evaluator, details of which
can be found in the Appendix A.1 and find it to
be consistently higher than 0.7 on average across
all languages and models. This shows the reliabil-
ity of our LLM-based evaluation for SEMANTIC
SIMILARITY which uses the GT response as a ref-
erence.

English

eot-4o [

Mistral-Lar;
Indic-gemma-Tb-finetuned-

Meta-Llama-3.1-70B-Instruct [
0.0 0.1 02 0.3 0.4 05 0.6 0.7 0.8
Percentage Agreement

Figure 1: Percentage Agreement between human and
LLM-evaluators for English. The red line indicates the
average PA across models.

4.3 Qualitative Analysis

One of the authors of the paper performed a qualita-
tive analysis of responses from the evaluated LLMs
on 100 selected patient questions. The questions
were chosen to cover a range of medical topics and
languages. Thematic analysis involved (1) initial fa-
miliarization with the queries and associated LLM
responses, (2) theme identification where 5 themes
were generated and (3) thematic coding where the
generated themes were applied to the 100 question-
answer pairs. We briefly summarize these results
below.

The five generated themes across queries were



Model AGG COH CON FC SS

QWEN2.5-72B-INSTRUCT 1.46 1.86 1.96 1.62 143
GPT-4 1.40 1.71 195 156 1.36
PHI-3.5-MOE-INSTRUCT 1.29 1.65 193 143 1.22
MISTRAL-LARGE-INSTRUCT-2407 1.29 1.60 1.95 142 1.24
OPEN-ADITI-HI-V4 1.27 1.69 1.85 1.37 1.22
LLAMAVAAD 1.16 1.34 0.97 1.36  1.20
ARYABHATTA-GEMMAGENZ-VIKAS-MERGED 1.12 1.48 1.65 1.22  1.07
KAN-LLAMA-7B-SFT-v0.5 1.01 1.39 1.64 1.07 097
GEMMA-2-27B-IT 1.00 1.28 1.88 1.07 091
ARYABHATTA-GEMMAORCA-MERGED 0.97 1.32 1.62 1.03 0.92
LLAMA3-GAJA-HINDI-8B-VO0.1 0.91 0.63 1.65 1.09 0.98
GPT-40 0.91 1.08 1.78 098 0.87
AYA-23-35B 0.91 1.09 1.65 1.00 0.83
GAJENDRA-V(0.1 0.88 1.21 1.38 093 0.85
C4AI-COMMAND-R-PLUS-08-2024 0.82 1.15 148 085 0.74
TAMIL-LLAMA-7B-INSTRUCT-V0.2 0.81 1.13 1.50 0.83 0.75
AIRAVATA 0.80 1.03 1.38 085 0.78
AMBARI-7B-INSTRUCT-V0.2 0.73 0.86 1.11  0.76 0.82
META-LLAMA-3.1-70B-INSTRUCT 0.65 0.55 1.12 077 0.67
TELUGU-LLAMA2-7B-VO-INSTRUCT 0.51 0.60 1.12 053 0.53
LLAMA38BGENZ_VIKAS-MERGED 0.51 0.52 1.09 055 0.53
INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 0.35 0.32 053 040 0.39
ARYABHATTA-GEMMAULTRA-MERGED 0.32 0.38 1.19 031 0.27
TELUGU-LLAMA-7B-INSTRUCT-VO. 1 0.04 0.00 0.58 0.03 0.00

Table 2: Metric-wise scores for English. The Proprietary , Open-Weights and Indic models are highlighted

appropriately. All Indic models are open-weights.

(1) misspelling of English words, (2) code-mixing,
(3) non-native English, (4) relevance to cultural
context and (5) specificity to the patient’s condi-
tion.

For queries that involve misspellings (such as
“saving” and “sarjere” mentioned in Section 3.1),
many evaluated LLM were not able to come up
with an appropriate response. For the query with
the word “saving", responses varied from “The pa-
tient should not be saved for more than 15 days
after the surgery” to “Saving should not be done
after surgery” to “You should not strain to pass
motion for 15 days after the surgery. If you are con-
stipated, it is recommended to consult the doctor”.
All of these responses deviate from the GPT-4
generated GT, which said “You can have a shave
after the cataract surgery. However, you should
avoid having a head bath or shampoo for 15 days
post-surgery.”

In cases of code mixing and Indian English,
LLMs were more robust in their responses than
to misspellings. The term “Kanna operation” was
well understood by most models, and Hinglish

queries were responded to in a manner that mir-
rored the GT answer. However, less common terms
were not understood when mixed with English. The
query with the word “Karwat” as mentioned in 3.1
received responses ranging from “you can start
cooking after 1 week” to “I’m sorry, but I cannot
provide an answer to your question. The infor-
mation you are seeking is not relevant to cataract
surgery or the guidelines for post-operative care”
to “be careful when children get near you”. Most of
the evaluated LLMs understood the use of “sugar”
in reference to diabetes, as well as sentences fol-
lowing different syntax than would be common in
native English.

The responses for culturally-relevant questions
varied greatly between evaluated LLMs. For ex-
ample, to the question on appropriateness of cha-
pati and puri on the day of surgery, some LLMs
approved, saying “Yes, he can take chapati, Puri
etc on the day of cataract surgery” while others
were against this, saying “You should have a light
meal before the surgery. Avoid heavy or oily foods
like chapati and Puri on the day of your cataract



surgery. It’s best to stick to easily digestible foods.
If you have any specific dietary concerns, please
discuss them with your healthcare team”. Ques-
tions relating to returning to a “native place” were
met with refusals by around half of the evaluated
LLMs.

Questions that were specific to the patient’s con-
dition were also responded to in a diverse manner
by the evaluated LLMs. For example, the query
“Can aztolet20 (atorvastatin and clopidogrel) tablet
be taken post surgery” had the GT response “I do
not know the answer to your question. If this needs
to be answered by a doctor, please schedule a con-
sultation” as there was no mention of this medica-
tion in the KB. However, some LLMs approved it’s
use, responding “Yes, you can take the aztolet20
(atorvastatin and clopidogrel) tablet post cataract
surgery. However, it is important to follow your
doctor’s prescription and instructions” while oth-
ers responded with mentions of medication that was
referred to in the KB, “If you are referring to the
IMOL tablet, it is usually taken when you experi-
ence pain. However, for other medications, please
share the name so I can provide a more accurate
answer. Always remember to follow your doctor’s
prescription.” Around half refused to answer the
question, mirroring the GT.

5 Discussion

In this study, we evaluated 24 models on healthcare-
related queries in the RAG setting. Our findings
revealed many insights which we share below:

Difference in model scores We find that the mod-
els that we evaluate vary widely in their scores.
This indicates that not all models are suitable for
use in the healthcare setting, and we find that some
models perform worse than expected. For example,
GPT-40 and META-LLAMA-3.1-70B-INSTRUCT
perform worse than smaller models on this task.

English vs. Multilingual Queries Although the
number of non-English queries is small, we find
that some Indic models perform better on English
queries than non-English queries. We also observe
that the Factual Correctness score is lower for non-
English queries than English queries on average,
indicating that models find it difficult to answer
non-English queries accurately. This may be due
to the cultural and linguistic nuances present in our
queries.

Multilingual vs. Indic models We evaluate sev-
eral models that are specifically fine-tuned on In-
dic languages and on Indic data and observe that
they do not always perform well on non-English
queries. This could be because several instruction
tuned models are tuned on synthetic instruction
data which is usually a translation of English in-
struction data. A notable exception is the AYA-
23-35B model, that contains manually created in-
struction tuning data for different languages and
performs well for Hindi. Additionally, several mul-
tilingual instruction tuning datasets have short in-
structions, which may not be suitable for complex
RAG settings, which typically have longer prompts
and large chunks of data.

Human vs. LLM-based evaluation We con-
duct human evaluation on a subset of models and
data points and observe strong alignment with
the LLM evaluator overall, especially regarding
the final ranking of the models. However, for
certain models like MISTRAL-LARGE-INSTRUCT-
2407 (for Telugu) and META-LLAMA-3.1-70B-
INSTRUCT (for other languages), the agreement
is low. It is important to note that we use LLM-
evaluators both with and without references, and as-
sess human agreement for SEMANTIC SIMILARITY
which uses ground truth references. This suggests
that LL.M-evaluators should be used cautiously in
a multilingual context, and we plan to broaden hu-
man evaluation to include more metrics in future
work.

Evaluation in controlled settings with uncon-
taminated datasets We evaluate 24 models in
an identical setting, leading to a fair comparison
between models. Our dataset is curated based on
questions from users of an application and is not
contaminated in the training dataset of any of the
models we evaluate, lending credibility to the re-
sults and insights we gather.

Locally-grounded, non-translated datasets
Our dataset includes various instances of code-
switching, Indian English colloquialisms, and
culturally specific questions which cannot be
obtained by translating datasets, particularly with
automated translations. While models were able
to handle code-switching to a certain extent,
responses varied greatly to culturally-relevant
questions. This underscores the importance of
collecting datasets from target populations while
building models or systems for real-world use.



6 Limitations

Our work is subject to several limitations.

* Because our dataset is derived from actual
users of a healthcare bot, we couldn’t regulate
the ratio of English to non-English queries.
Consequently, the volume of non-English
queries in our dataset is significantly lower
than that of English queries, meaning the re-
sults on non-English queries should not be
considered definitive. Similarly, since the
HEALTHBOT is available only in four In-
dian languages, we also could not evaluate
on languages beyond these. The scope of our
HEALTHBOT setting is currently confined to
queries from patients at one hospital in India,
resulting in less varied data. We intend to ex-
pand this study as HEALTHBOT extends its
reach to other parts of the country.

¢ While we evaluated numerous models in this
work, some were excluded from this study
for various reasons, such as ease of access.
We aim to incorporate more models in future
research.

» Research has indicated that LL.M-based eval-
uators tend to prefer their own responses. In
our evaluations, we use GPT-40, and there
may be a bias leading to higher scores for
the GPT-40 model and other models within
the GPT family. Although not investigated in
prior research, it is also conceivable that mod-
els fine-tuned with synthetic data generated by
GPT-40 might receive elevated scores. We
urge readers to keep these in mind while inter-
preting the scores. In future work, we plan to
use multiple LLM-evaluators to obtain more
robust results.

* Finally, our human evaluation was limited to
a subset of models and data, and a single met-
ric due to time and budget constraints. In
future work, we plan to incorporate more hu-
man evaluation, as well as qualitative analysis
of the results.

7 Ethical Considerations

We use the framework by Bender and Friedman
(2018) to discuss the ethical considerations for our
work.

Institutional Review All aspects of this research
were reviewed and approved by the Institutional Re-
view Board of our organization and also approved
by KARYA.

Data Our study is conducted in collaboration
with KARYA, that pays workers several times the
minimum wage in India and provides them with
dignified digital work. Workers were paid 15 INR
per datapoint for this study. Each datapoint took
approximately 4 minutes to evaluate.

Annotator Demographics All annotators were
native speakers of the languages that they were
evaluating. Other annotator demographics were
not collected for this study.

Annotation Guidelines KARYA provided anno-
tation guidelines and training to all workers.

Compute/AI Resources All our experiments
were conducted on 4 x A100 80Gb PCIE GPUs.
The API calls to the GPT models were done
through the Azure OpenAl service. We also ac-
knowledge the usage of ChatGPT and GitHub
CoPilot for building our codebase, and for refining
the writing of the paper.
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Figure 2: Percentage agreement between human and
LLM-evaluators for Indic languages

- You are an cataract chatbot whose primary goal is to help patients
undergoing or undergone a cataract surgery.

- If the query can be truthfully and factually answered using the
knowledge base only, answer it concisely in a polite and professional
way. If not, then just say: ‘I do not know the answer to your
question. If this needs to be answered by a doctor, please schedule
a consultation. ¢

- Incase of a conflict between raw knowledge base and new knowledge
base, always prefer the new knowledge base, and the latest source
in the new knowledge base. Note that, either the raw knowledge base
or the new knowledge base can be empty.

- The provided query is in {query_lang}, and you must always respond
in {response_lang}.

- Do not generate any other opening or closing statements or remarks.

Figure 3: System Prompt for Generation

- You are a helpful, unbiased **evaluator** that judges the quality
of the response generated by the model given a query, relevant
knowledge base chunks, ground-truth reference, and a metric to
evaluate the response. Note that, not all the information will be
provided to you in every case, and you must evaluate the response
based only on the information provided to you.

- The metric will be always provided to you in a **JSON%* format,
and you have to use that metric to evaluate the response. You
**MUST NOTxx change or digress from the metric provided to you. -
In each case, you **MUST ALWAYSxx prioritize the knowledge from
the new/updated knowledge base over the raw knowledge base.

- xxIF*x a reference ground truth is provided, you **MUSTx* take
it as the most optimal response and evaluate the response based on
the metric provided to you.

- In all cases, the knowledge base will serve as the *xONLY*x
knowledge source for you to generate the response, and you **MUST
NEVER** use any of your internal knowledge to evaluate the response
for factuality and information retrieval.

- Your output **MUST** be a **JSON** dictionary with the following
keys:

— Score: The score of the response based on the metric provided
to you. The score should be an integer value from @ to 2,
as mentioned in the metric.

— Justification: A brief justification (in English) of
the score you have assigned the response. Your
justification **MUST** always reference the relevant pieces
from the answer, query, and knowledge base chunks for
interpretability.

S

Figure 4: System prompt for evaluation
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Model AGG | COH CON FC SS
GPT-4 1.21 1.74 1.79 126 1.16
QWEN2.5-72B-INSTRUCT 1.20 1.89 1.95 1.21  1.11
MISTRAL-LARGE-INSTRUCT-2407 1.18 1.53 1.79 1.26 1.16
GEMMA-2-27B-IT 0.93 1.11 1.89 1.05 0.79
AYA-23-35B 0.92 0.95 1.79 1.05 0.84
ARYABHATTA-GEMMAGENZ-VIKAS-MERGED 0.89 1.11 1.32 1.00 0.84
PHI-3.5-MOE-INSTRUCT 0.81 1.11 1.74  0.79 0.79
GPT-40 0.76 0.74 1.79 084 0.74
ARYABHATTA-GEMMAORCA-MERGED 0.64 1.00 1.21 0.58 0.68
AIRAVATA 0.63 0.84 1.26  0.68 0.53
LLAMA3-GAJA-HINDI-8B-VO0.1 0.60 0.79 126 0.63 0.53
OPEN-ADITI-HI-V4 0.56 0.89 1.00 047 0.63
LLAMAVAAD 0.55 0.47 0.21 0.68 0.63
C4AI-COMMAND-R-PLUS-08-2024 0.52 0.95 147 047 0.37
META-LLAMA-3.1-70B-INSTRUCT 0.48 0.47 1.16 053 047
GAJENDRA-V0.1 0.38 0.47 0.68 037 042
LLAMA38BGENZ_VIKAS-MERGED 0.32 0.21 1.00 032 0.37
ARYABHATTA-GEMMAULTRA-MERGED 0.31 0.37 1.00 032 0.26
INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 0.24 0.11 0.53 026 0.32

Table 3: Metric-wise scores for Hindi

Model AGG | COH CON FC SS
QWEN2.5-72B-INSTRUCT 1.29 1.87 196 135 1.22
GPT-4 1.18 1.78 196 130 091
MISTRAL-LARGE-INSTRUCT-2407 1.09 1.39 1.96 1.22  0.96
GEMMA-2-27B-IT 0.92 1.30 1.91 1.04 0.65
GPT-40 0.88 0.96 2.00 1.00 0.74
ARYABHATTA-GEMMAORCA-MERGED 0.51 0.57 1.13 052 0.52
META-LLAMA-3.1-70B-INSTRUCT 0.48 0.43 0.78 057 0.48
KAN-LLAMA-7B-SFT-v0.5 0.47 0.52 1.04 048 048
LLAMA38BGENZ_VIKAS-MERGED 0.47 0.52 1.00 043 0.57
INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 0.24 0.35 0.39 026 0.22
PHI-3.5-MOE-INSTRUCT 0.20 0.26 .22 0.17 0.09
ARYABHATTA-GEMMAULTRA-MERGED 0.13 0.17 0.70 0.09 0.13
AMBARI-7B-INSTRUCT-V0.2 0.05 0.04 0.13 0.04 0.09

Table 4: Metric-wise scores for Kannada



Model AGG | COH CON FC SS

QWEN2.5-72B-INSTRUCT 1.29 1.87 196 135 1.22
GPT-4 1.18 1.78 196 130 091
MISTRAL-LARGE-INSTRUCT-2407 1.09 1.39 1.96 1.22  0.96
GEMMA-2-27B-IT 0.92 1.30 1.91 1.04 0.65
GPT-40 0.88 0.96 2.00 1.00 0.74
ARYABHATTA-GEMMAORCA-MERGED 0.51 0.57 .13 052 0.52
META-LLAMA-3.1-70B-INSTRUCT 0.48 0.43 0.78 057 048
KAN-LLAMA-7B-SFT-v0.5 0.47 0.52 1.04 048 048
LLAMA38BGENZ_VIKAS-MERGED 0.47 0.52 1.00 043 0.57
INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 0.24 0.35 039 026 0.22
PHI-3.5-MOE-INSTRUCT 0.20 0.26 .22 0.17 0.09
ARYABHATTA-GEMMAULTRA-MERGED 0.13 0.17 0.70  0.09 0.13
AMBARI-7B-INSTRUCT-V0.2 0.05 0.04 0.13 0.04 0.09

Table 5: Metric-wise scores for Tamil

Model AGG | COH CON FC SS
GPT-4 1.14 1.64 200 129 0.86
QWEN2.5-72B-INSTRUCT 1.11 1.57 1.71 1.29 0.86
MISTRAL-LARGE-INSTRUCT-2407 1.03 1.36 2.00 1.14 0.86
GEMMA-2-27B-IT 0.91 1.21 2.00 1.00 0.71
META-LLAMA-3.1-70B-INSTRUCT 0.61 0.43 1.00  0.79 0.57
GPT-40 0.54 0.57 1.86 0.57 043
PHI-3.5-MOE-INSTRUCT 0.44 0.57 1.86 043 0.29
LLAMA38BGENZ_VIKAS-MERGED 0.33 0.14 1.50 036 0.29
ARYABHATTA-GEMMAORCA-MERGED 0.29 0.29 093 029 0.29
ARYABHATTA-GEMMAULTRA-MERGED 0.26 0.29 1.71 021 0.14
INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 0.19 0.29 0.57 021 0.07
TELUGU-LLAMA-7B-INSTRUCT-VO. 1 0.09 0.00 .71 0.00 0.00
TELUGU-LLAMA2-7B-VO-INSTRUCT 0.00 0.00 0.00 0.00 0.00

Table 6: Metric-wise scores for Telugu

-
“name": “Coherence",

“description”: "Coherence assesses the logical flow of the response, ensuring that one idea leads smoothly to the next. A coherent response should
present information in a structured manner, making it easy for the reader to follow the thought process without confusion.”,

"scoring”: {

"0": {
"(a)": "The response is highly disorganized and lacks a clear structure, making it difficult to follow."”,
"(b)": "Sentences or ideas appear out of order or are disconnected, resulting in a confusing or jarring reading experience.”,
"(c)": "The overall message is unclear due to poor organization.”
3
"t {
"(a)": "The response has some structure but includes noticeable breaks in the logical flow.",
"(b)": "Transitions between ideas may be abrupt, or there may be gaps in the reasoning, forcing the reader to make extra effort
to follow along.”,
"(c)": "While the main point is evident, the flow is inconsistent.”
3,
"2 {
"(a)": "The response is well-organized and flows logically from one idea to the next.”,
"(b)": "Each point builds naturally on the previous one, creating a clear and cohesive narrative.”,
"(e)": "The reader can easily follow the thought process without having to backtrack or piece together disjointed information.”
}

Figure 5: Metric description: COHERENCE



“name”: “Conciseness”,

“description”: "This metric evaluates how effectively the response conveys its message without unnecessary repetition or extraneous details. A
concise response is brief yet comprehensive, avoiding long-winded explanations and focusing on the core message. However, it must not sacrifice
clarity or completeness in the pursuit of brevity.”,

"scoring”: {

"or: {
"(a)": "The response is overly verbose, including repeated information, irrelevant details, or excessive explanations.”,
"(b)": "It takes far longer than necessary to convey the intended message, making it inefficient and difficult to read.”
i
e g
"(a)": "The response is somewhat concise but includes some unnecessary information or redundant points.”,
"(b)": "While the main message is clear, the response could be made more efficient by removing repetition or streamlining explanations.”
3,
ngm. ¢
"(a)": "The response is highly concise, delivering all relevant information in a brief and efficient manner.”,
"(b)": "There is no repetition, and every sentence serves a clear purpose.”,
"(c)": "The message is conveyed succinctly, without sacrificing clarity or detail.”
b

Figure 6: Metric description: CONCISENESS

“name": “Factual Accuracy”,

“description”: "This metric assesses the factual correctness of the response, focusing on whether the information provided aligns with verified
facts from the ground-truth answer and the available knowledge base. It evaluates both numerical and phrase-based facts, ensuring that key factual
elements such as data points, dates, and specific terminology are accurate and verifiable. The evaluation emphasizes the accuracy of important
details that are crucial for the validity of the response.”,

"scoring”: {

"o {
"(a)": "The response contains one or more significant factual errors.”,
"(b)": "Key facts, numbers, or data points are incorrect, misleading, or fabricated, and the response does not align with the ground-truth
or the knowledge base.”,
"(c)": "The factual inaccuracies could lead to misunderstandings or incorrect conclusions.”
3,
RIS
"(a)": "The response is partially accurate but contains minor factual inaccuracies or omissions.”,
"(b)": "While the majority of facts are correct, some important details may be misstated or missing.”,
"(c)": "The response captures the general truth but lacks precision or completeness in key factual areas.”
3
“rrg
"(a)": "The response is factually accurate, with all critical facts, figures, and details aligned with the ground-truth answer and
knowledge base."”,
"(b)": "There are no factual errors, and the information is presented with precision and correctness, making the response highly
reliable.”
i

Figure 7: Metric description: FACTUAL CORRECTNESS

“name”: “Semantic Similarity”,

“description”: "This metric assesses the core meaning and factual alignment between the prediction and ground-truth. It evaluates whether critical
information such as factual knowledge, numbers, and key phrases match, prioritizing factual accuracy and the alignment of essential concepts over
stylistic or surface-level similarities.”,

"scoring”: {

"o": {
"(a)": "he prediction does not align with the ground truth in terms of key facts, numbers, or critical phrases.”,
"(b)": "The core meaning of the prediction diverges entirely from the ground-truth.”,
"(e)": "The differences would lead to misunderstandings or incorrect conclusions about the core message.”

3,

"
"(a)": "The prediction contains some similarities to the ground truth, with some key facts, numbers, and phrases being correctly aligned.”,
"(b)": "However, the prediction is missing some information or contains some added information.",
"(c)": "This causes the prediction to fail at encapsulating the entire core meaning present in the ground truth.”

i

"2": {
"(a)": "The prediction is semantically similar to the ground-truth, with key facts, numbers, and phrases correctly aligned.”,
"(b)": "Any differences are minor and do not significantly alter the core meaning or factual accuracy.”,
"(c)": "The essential message of the prediction matches that of the ground-truth.”

i

Figure 8: Metric description: SEMANTIC SIMILARITY



Language

Human Ranking

LLM Ranking

PHI-3.5-MOE-INSTRUCT (1.30),
MISTRAL-LARGE-INSTRUCT-2407 (1.28)

PHI-3.5-MOE-INSTRUCT (1.22),
MISTRAL-LARGE-INSTRUCT-2407 (1.14),

English GPT-40 (0.90), GPT-40 (0.87),

META-LLAMA-3.1-70B-INSTRUCT (0.88), META-LLAMA-3.1-70B-INSTRUCT (0.61),
INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 (0.62) INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 (0.41)
MISTRAL-LARGE-INSTRUCT-2407 (1.21), MISTRAL-LARGE-INSTRUCT-2407 (1.16),
PHI-3.5-MOE-INSTRUCT (0.95), PHI-3.5-MOE-INSTRUCT (0.79),

Hindi GPT-40 (0.68), GPT-40 (0.74),

META-LLAMA-3.1-70B-INSTRUCT (0.58), META-LLAMA-3.1-70B-INSTRUCT (0.47),
INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 (0.53) INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 (0.32)
MISTRAL-LARGE-INSTRUCT-2407 (0.96), MISTRAL-LARGE-INSTRUCT-2407 (0.96),

GPT-40 (0.91), GPT-40 (0.74),

Kannada META-LLAMA-3.1-70B-INSTRUCT (0.74), META-LLAMA-3.1-70B-INSTRUCT (0.48),
INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 (0.35), INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 (0.22),
PHI-3.5-MOE-INSTRUCT (0.17) PHI-3.5-MOE-INSTRUCT (0.09)
MISTRAL-LARGE-INSTRUCT-2407 (1.37), MISTRAL-LARGE-INSTRUCT-2407 (1.26),

GPT-40 (1.07), GPT-40 (1.04),

Tamil PHI-3.5-MOE-INSTRUCT (1.04), PHI-3.5-MOE-INSTRUCT (0.96),
META-LLAMA-3.1-70B-INSTRUCT (0.48), META-LLAMA-3.1-70B-INSTRUCT (0.48),
INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 (0.19) INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 (0.19)
MISTRAL-LARGE-INSTRUCT-2407 (1.31), MISTRAL-LARGE-INSTRUCT-2407 (0.77),
META-LLAMA-3.1-70B-INSTRUCT (0.62), META-LLAMA-3.1-70B-INSTRUCT (0.46),

Telugu INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 (0.38), GPT-40 (0.31),

GPT-40 (0.38),
PHI-3.5-MOE-INSTRUCT (0.15)

PHI-3.5-MOE-INSTRUCT (0.15),
INDIC-GEMMA-7B-FINETUNED-SFT-NAVARASA-2.0 (0.08)

Table 7: Human and LLM ranking according to the direct assessment. The value in the bracket denotes the average
score of the metric SEMANTIC SIMILARITY which was used for the evaluation.
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