
Collaborative Energy Conservation in a Microgrid

Mohit JainI , Harshad KhadilkarI , Neha SenguptaI∗, Zainul CharbiwalaI ,
Kushan U TennakoonB , Rodzay bin Haji Abdul WahabB ,
Liyanage Chandratilak De SilvaU , Deva P. SeetharamI∗

I IBM Research, B Institute for Biodiversity & Environmental Research,
UUniversiti Brunei Darussalam

{mohitjain,harshad.khadilkar,zainulcharbiwala}@in.ibm.com

Abstract
KBFSC (Kuala Belalong Field Studies Centre) is a re-

search centre located in a remote tropical evergreen rainfor-
est in Brunei Darussalam in South East Asia. It is visited by
biologists and ecologists from all over the world. Power is
available at the centre for 8-10 hours per day from a diesel
generator (DG). The diesel travels2-3 hours by road, by boat
and on foot over harsh terrain to reach the centre from the
closest gas station. This paper describes the software and
hardware of a microgrid system that was designed and de-
ployed at KBFSC to reduce the fuel consumption while im-
proving duration of power availability. A key feature of
the energy management software is a collaborative sched-
uler interface that provides visitors at the centre the choice of
scheduling appliance usage. The system optimises generator
active hours using a customised DG Optimiser technique, to
ensure minimum diesel consumption. Simulations extrapo-
lating from empirical data suggest that our system could re-
duce diesel consumption by a third, and total cost by 20%,
while making power available 24 hours a day. In addition, a
user study with 8 visitors and 4 administrators showed that
the collaborative scheduler interface is effective and usable.
Categories and Subject Descriptors

C.3 [Computer systems organization]: Special-purpose
and application-based systems
General Terms

Design; Experimentation; Performance
Keywords

Microgrid; Scheduling; Dynamic Programming
1 Introduction

Microgrids [10] are emerging as a potential solution to
the problem of remote electrification, where it is either im-
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practical and/or uneconomical to extend the electricity grid
[3]. Microgrids combine local sources of energy to form a
miniature grid to which consumers can be connected to draw
power as needed. While renewable sources of energy are
picking up pace, a majority of remote locations still rely on
diesel generators (DGs) [4] since they are simple to set up,
lower in capital expenditure, and are available for use on-
demand. The inherent remoteness of these locations makes
transportation of diesel to these places an arduous task. The
Kuala Belalong Field Studies Center (KBFSC) is a remote
campus located within the scientific zone of a tropical rain-
forest in the Temburong District of Brunei Darussalam [8].
The center is not connected to the electricity grid, and is
instead powered by a diesel generator. The generator at
KBFSC is typically operated on a fixed schedule between
6am-8am and 4pm-11pm (≈9 hours/day), consuming 30-50
litres of diesel per day. The diesel is periodically supplied
through a laborious process involving road- and water-based
transport.

The objectives for an energy solution at KBFSC were
threefold: (i) increase the duration of power availability, (ii)
reduce diesel consumption, and (iii) minimize user inconve-
nience. Through discussions with administrators and visitors
at the center and through energy instrumentation and analy-
sis of power and fuel data, we discovered a number of issues.
First, we found that during much of the fixed times that the
generator was turned on, it powered only light loads. The DG
was, therefore, frequently loaded to only 30% of its capac-
ity (Fig. 1). Through further instrumentation, we discovered
that the fuel efficiency characteristics of the DG is particu-
larly non-linear. While efficiency non-linearity is inherent to
all generators [18], DGs are typically sized to operate in the
relatively flat portion of their efficiency curve. At KBFSC,
however, the DG is sized for worst case load (a full center)
and the average case load falls well below its flat portion (see
Fig. 2). Improving this efficiency could lead us to significant
diesel savings without affecting the overall energy genera-
tion.

A second aspect of the energy problem stemmed from
fixed generator timings. On one hand, the DG stayed on even
during times when no (or small) loads were needed. On the
other hand, consumers would need to time-shift their con-
sumption just to use some appliances. The generator could
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be turned on outside these hours as well but only for special
needs. When the DG was turned on for individual use, not
only would the efficiency be low, but unnecessary loads may
also turn on inadvertently, leading to further waste. For ex-
ample, a water heater may turn on, but the hot water may not
be used soon and its heat would leak and be eventually lost.
Arbitrarily increasing the number of generator run hours led
to wastage and additional diesel use, while reducing it led to
consumer inconvenience.

Figure 1: DG Generation Statistics - over 3 months

A dynamic system was needed that would meet user
needs and improve systemic efficiency. A microgrid and its
management system was designed for KBFSC to reach these
goals. This paper describes the following three modules con-
stituting the microgrid (Fig. 3):
• A battery bank is added to supply power to small

but convenience (primary) loads, such as lights and
fans. All other (secondary) loads, such as dryers, water
heaters, etc., are powered only when the DG is on. The
battery bank gets recharged when the DG is running.
Sec. 4.1 provides details of the design of the battery
sub-system.

• A dynamic scheduling system is developed to arrive at
the best times and durations to run the DG. This is a col-
laborative scheduler (Sec. 4.2), which provides a user
interface for visitors to choose when they want to use a
particular secondary appliance. The scheduler uses an
optimization system for each scheduling request to en-
sure minimum diesel consumption. Sec. 5.1 describes
the user study that was performed to evaluate the inter-
face.

• DG optimiser (Sec. 4.3) software uses characteristics of
DG, load of secondary appliances, and current battery
status, to suggest DG run hours. This results in reduc-
tion in fuel consumption as the DG is loaded optimally.
Sec. 5.1 evaluates the efficacy of the optimization sys-
tem.

Certain aspects were kept in mind while designing the
system. First, the appliances used in KBFSC should not need
individual energy monitoring capabilities. Second, the col-
laborative scheduler system should need minimal learning
and minimize inconvenience caused to visitors as well as ad-
ministrative staff. Third, the scheduler interface needs to be
responsive, i.e., the DG optimiser should be low on compu-

tation time. Our proposed system performs optimal schedul-
ing of the DG based on visitor scheduling requests and bat-
tery charge status. We use simulations that extrapolate from
real data to highlight the advantages of this solution strategy.
We found that scheduling and optimizing the DG with visi-
tor inputs using the collaborative scheduler results in 33.3%
diesel fuel burn reduction and shaves total cost by 20.1% for
25 schedule requests, while making power available 24 hours
a day for primary loads. In addition, we conducted cognitive
walkthrough of the collaborative scheduler interface with 8
visitors and 4 administrators, to qualitatively evaluate the us-
ability of the interface, and incorporated changes that were
found during this user study. Our solution could be applied
to other remote locations (such as rural communities) where
community effort toward conservation can achieve higher
energy efficiency and increased power availability for impor-
tant loads.

Figure 2: DG Efficiency Characteristics

2 Related Work
2.1 Microgrids

Microgrids are considered the modern, small-scale ver-
sions of the centralized electricity system [10]. They are
ideal for remote locations, like the Maldives [16], and for
rural electrification where connectivity to the macrogrid is
infeasible. Microgrids enable local integration of renewable
sources and could encourage conservative practices through
community participation. Much research in microgrids has
focused on their design and sizing. Hafez et al. [11] use the
popular HOMER [2] tool to evaluate different microgrid de-
signs, in terms of performance and sizing from an economic
perspective. Microgrids are operationally challenging, how-
ever, due to the heterogeneous characteristics of sources and
loads. In this paper, we focus on the optimal economic op-
eration of the hardware components, using inputs from users
through software interfaces and optimization algorithms.

2.2 Interfaces for Sustainability
Most of the sustainability related research works in inter-

faces have focused on designing eco-feedback technologies
[9]. In particular for energy, researchers have used portal-
like interfaces to provide energy consumption information to
the users. Using ways like goal setting, social comparisons,
consumption visualization, and rewards, such systems have
resulted in a decrease in consumption by 5-20% [13, 9, 7].
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However, all such systems are passive in nature, as they pro-
vide past consumption information to motivate consumers
to reduce consumption in future. In contrast, our system is
a pro-active system, asking consumers to plan their energy
consumption a day in advance.
2.3 Optimal Operation of Microgrids

The problem of scheduling energy sources in a microgrid
setting has been considered in prior literature. Morais et al.
[15] use mixed-integer linear programming methods to solve
the optimization formulation. This approach makes it diffi-
cult to include realistic constraints, and is also computation-
ally intensive, thus requiring time. Other research work use
genetic algorithms for computing optimal schedules [12],
but randomized search algorithms have large memory re-
quirements, slow computation times, and do not guarantee
optimality. In this paper, we propose a two-step optimiza-
tion procedure, which is a fast way of computing optimal
schedules. It can easily incorporate scheduling constraints
and non-linear system dynamics. Since operating norms at
KBFSC preclude frequent rescheduling of the DG operat-
ing hours, knowledge-based expert systems such as those de-
scribed in Ross et al. [19] are not relevant to this work.

3 System Requirements
We conducted semi-structured interviews with 4 visitors

and 2 administrators. The aim of this study is to understand
in detail the issues faced at KBFSC.
3.1 Method

All the interviews were conducted in the dining area of
KBFSC, were voice recorded and later transcribed in En-
glish. The interviewer took extensive notes during the study.
On an average, an interview took ≈1 hour. Notes and tran-
scripts were used for analysis. Transcriptions were open
coded by one author. Two authors then jointly conducted
selective coding to identify themes that were representative
of the data and were either novel or important.
3.2 Participants

Four visitors (3 male, 1 female, average age=30.5 years,
sd=2.6; named V1:V4) participated in the study. Three of
the participants have an educational background in Ecology,
while one in Biology. All, except one, has visited a field cen-
ter before. All the visitors answered in neutral to strongly
agree (on a 5-point Likert scale, with 1 for strongly disagree
and 5 for strongly agree) when asked about their orientation
towards conservation, “I am environment-friendly and do ev-
erything possible to save the environment?” with average
score of 4 (sd=0.8). With regards to DG run hours at KBFSC,
all the visitors selected ‘runs more than required’ out of the
four available options.

Two administrators (1 male, 1 female, average age=43.5
years, sd=0.7; ; named A1:A2) participated in the study.
Their education level varied with 1 having Bachelor’s degree
and 1 completed secondary school. With regards to their ori-
entation towards conservation, both rated themselves high
with score of 5.
3.3 Findings

Visitors and administrators mentioned the following prob-
lems faced at KBFSC.

(i) Fixed DG hours: A visitor and an administrator com-
plained about limited electricity, “electricity is only available
for certain fixed hours” (V1). On the contrary, other visitors
mentioned that “DG run hours is generous” (V2, V3), and
“DG is ON for more than required, especially in the morn-
ing as people usually sleep late or go out for field work.”
(V2, V4). This hints that the solution should aim to reduce
the total number of DG run hours, by providing dynamic DG
hours.

(ii) Underutilized DG: Underutilization of DG capacity
was a problem identified by the administrators, as well as
the visitors. From the KBFSC DG data, we found that the
DG is most frequently loaded to only 30% of its capacity.
At times, visitors noticed that the DG was running just for 1
visitor, “silly to run the DG just for one person” (V2). Ad-
ministrators were looking for a solution that can use the DG
at near-maximum capacity to obtain higher efficiency, “DG
should be exploited the maximum during the time it is run-
ning” (A2).

(iii) Inconvenient DG Hours: Each visitor wanted DG to
run at different hours, as per their schedule and convenience.
Two visitors mentioned taking hot shower in the morning
before starting for field work, while others wanted to take
hot showers in afternoon after they are back from the field
visit. Visitors suggested that, “we should be involved in the
decision-making process of the DG run hours, as we are the
ones using it maximally... also, some of us might be unhappy
with the current (DG) hours.” (V2), “... tailor the DG hours
as per the group who is here.” (V4)

(iv) No DG = No Primary Loads: “No fans at night” (V2),
“no lights at night... I use head lamps” (V3), and “no fans
at day, when it gets hot” (V4), were some of the problems
cited by the visitors due to unavailability of lights and fans
(primary loads) during DG OFF hours. One of the solutions
is to use batteries to power primary loads, when the DG is
OFF.

During the stay at KBFSC, one of the authors observed
two interesting phenomenon:

(i) Every night after dinner, all the visitors used to note
their next day’s activity schedule on a white board placed in
the dining area, including time details, boats required, guide
required, food required, etc. After all the visitors completed
adding their details, the administrator would allocate boats
and guide (by writing boat number, boat rower name, and/or
guide name, on the white board) to each visitor/team for the
time period.

(ii) Due to fixed DG run hours, visitors regularly plan
their day in advance and shedule their activities (such as
wake up early for hot shower, plan to do laundry, etc.) as
per the DG run hours.

4 System Design
Based on the issues raised above, a solution was devel-

oped for the energy situation at KBFSC as illustrated in Fig.
3. A collaborative scheduler receives user inputs for their
choice of secondary appliance usage. This is used by the DG
optimiser to compute an optimal generator schedule. The op-
timiser uses DG efficiency characteristics and a model of the
battery bank to ensure minimum diesel usage, while meet-
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Figure 3: KBFSC Microgrid Solution Overview

ing user needs and maintaining sufficient battery charge to
guarantee power availability for primary appliances. In this
section, we discuss the design considerations for the battery
bank, details of the collaborative scheduler interface for vis-
itors and staff members to place scheduling requests, and in-
terface for administrator to select the final DG run hours,
followed by a description of the DG Optimiser.

4.1 Battery and DG System
The DG at KBFSC is a 30kVA three-phase system. With

the DG being the sole source of power, user appliances can
only be used during the fixed times it was on. Through
interactions with users, we realized that a small amount of
power, if it was available on demand all the time, would in-
crease user convenience significantly. A storage based sys-
tem seemed like a good choice. However, it would need to
be connected to selected (primary) loads only to prevent in-
advertent wastage or deliberate use of large appliances. A
battery bank would need be installed, and would charge from
DG power when it was running and provide power to loads
when the DG was off.

Introduction of the battery bank could lead to another po-
tential advantage. Fig. 2 illustrates the variation in fuel con-
version efficiency of diesel generators with increasing load
[1]. A higher loaded DG is typically more efficient in the
amount of electrical energy it delivers per liter of fuel. The
battery bank could play the role of load aggregation so that
it would load the DG at a higher value and a higher effi-
ciency while charging. The battery would then release this
energy slowly over time to the low powered primary appli-
ances when the DG is turned off.

For the system to be effective, energy losses that are part
of the round trip to the battery and back though the inverter
and charger would need to be offset by the efficiency gains of
the DG. This implies that the battery bank should be charged
at the maximum feasible rate, to load the DG as much as
possible. Of course, the total rating of the DG (30kVA in
our case) should never be violated. Lead acid batteries were
chosen in our installation for their technological maturity and
environmental stability. Lifetimes of batteries are sensitive
to the charging and discharging rates they are subjected to
[6]. This sensitivity is typically rated in terms of a fraction
of their capacity. The final size of the battery was calculated

based on a combination of the required charging rate (to be
compatible with the size of the DG) and the capacity required
for powering at least the primary loads for a duration of 24
hours.

4.2 Collaborative Scheduler
Collaborative Scheduler is a system that allows KBFSC

visitors and staff members to schedule their appliance usage
a day in advance, and helps administrators schedule DG run
hours based on the inputs received from visitors and staff.
The collaborative scheduler user interface is designed as a
walk-up-and-use kiosk-based system with a minimal learn-
ing curve, and requires minimal interaction to complete the
task. The interface was deployed on a touch-screen moni-
tor connected to a (hidden) laptop. The monitor is placed in
the dining area providing maximal visibility. There are two
separate interfaces - Visitor and Administrator - which are
discussed below.

4.2.1 Visitor Interface
The visitor interface (Fig. 4) allows visitors and staff

members to schedule their appliance usage for the next day.
A user (a visitor or a staff member) can walk up to the touch-
based kiosk and select an activity that they would perform
the next day, such as take a hot shower, wash clothes, dry
clothes, etc. After an activity is selected, all the input fields
(duration of the activity and time period to perform that ac-
tivity) get auto-populated, so that the user can simply tap on
‘Submit’ and complete the task. After scheduling once, the
user can return to the home screen to schedule another activ-
ity.

Advanced users can alter the different input fields to fur-
ther customize their schedule. A user can increase or de-
crease the duration of an activity in steps of 15 minutes, us-
ing the ‘+’ and ‘-’ button (minimum: 15 minutes, maximum:
180 minutes). As per the selected activity and duration, the
system uses DG Optimizer (Sec. 4.3) to recommend a time
period to perform that activity (shown in green color, Fig.
4). By default, the selected time period (shown in grey color,
Fig. 4) appears to be of the length of the selected duration
and over the recommended time period. The user can drag
the selected time period to choose another time period to
schedule the activity. Moreover, the user can provide his/her
time period flexibility of performing the activity, by choos-
ing a time period bigger than the selected duration (e.g., in
Fig. 4, selected duration is 60 minutes, while selected time
period is 3 hours from 2-5 pm) using the handlebars provided
on both sides of the selected time period. Based on the in-
puts, including activity, duration, and selected time period,
the user is provided feedback in terms of greenness of the
activity (using 5-leaf green level), and their activity’s con-
tribution towards the energy consumption, diesel usage, and
carbon dioxide production, along with the total values for
each. Greenness is inversely proportional to the selected du-
ration, and directly proportional to the selected time period,
and overlap between selected and recommended time period.

Flexibility and recommended time are directly related to
conservation (or green) behavior, while duration is inversely
related to the conservation behavior. To achieve a 5-leaf
green level, the user needs to select a short duration for an ac-
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Select Activity 

Select Duration 

Recommended 
time (2:30-4 PM) 

Admin login 

Selected time 
(2-5 PM) 

Feedback 
(Green-ness, 
your 
contribution) 

Figure 4: Visitor Interface of KBFSC Collaborative Scheduler

Figure 5: Schedules input by visitor with flexibility

tivity (e.g., 15-min hot shower, 60-min dry clothes, etcetera),
and select a time that falls in the recommended time period
and is highly flexible (for example, if a 60-min activity has
a recommended time of 2:30-4 pm, the user should select
something like 2-5 pm). Fig. 5 shows an example of inputs
provided by several visitors. Thick lines indicate duration,
while the thin lines indicate selected time period. The colors
indicate appliances with different rated power.
4.2.2 Administrator Interface

The administrator interface (Fig. 6) allows viewing of ac-
tivities scheduled by the visitors and staff members, to help
the administrator schedule diesel generator (DG) running
hours for the next day. To login, the administrator needs to
tap on ‘Admin Login’ (Fig. 4), which pops up an on-screen
numeric pad to enter the 6-digit administrator password. Af-
ter entering the correct password, administrator interface is
shown (Fig. 6). Based on the inputs received from the visi-
tors and staff members, recommended DG timings gets auto-
populated (shown as green star, Fig. 6) using DG Optimiser
(Sec. 4.3), so that the administrator can tap on ‘Publish’ to
complete the task.

In addition, the administrator can view all the scheduling

requests and is free to select any DG run timings (irrespec-
tive of the DG Optimiser’s recommendations). The top bar
with green regions visualises the currently selected DG run
timings, which are also being listed on the right hand side.
The bar below the selected DG run timings visualisation is
the activity bar. The activity bar is interactive and has yellow
regions visualising the time periods, during which users have
scheduled any activity. Administrator can use the handlebars
to select a time period on the activity bar. Appliances being
scheduled during the selected time period get populated in
the pop-up below it, and the two graphs visualising power
consumption and diesel usage gets automatically updated,
along with the aggregate data and contribution of the current
time period selection on the right. Tapping on the ‘Allot’
button adds that time period to selected DG run timings.

4.3 DG Optimiser
The optimal times of operation of the diesel generator are

computed based on the scheduling requests received from the
scheduler interface for the secondary appliances, and current
battery charge level with battery charging/discharging chem-
istry. The scheduling requests include the power rating of the
appliance for the requested activity, the usage duration, and
the acceptable times of operation (i.e, selected time period).
The objective of the optimisation procedure is to minimize
the diesel consumption. There are two facets to the problem
formulation for this system. First, there is the problem of
scheduling the actual running time of each request. Second,
there is the problem of computing the DG running schedule.

Ideally, the globally optimal solution can be computed by
optimizing the appliance and DG running times together in
one step. However, this methodology faces severe compu-
tational issues because of the size of the state space. For
illustration, let us assume that the optimisation time window
is divided into 96 slots of 15 minutes each, covering a total of
24 hours. Let the number of scheduling requests be 25. The
number of combinations of appliance running times is of the
order of 9625. This will be further multiplied by the number
of combinations of DG running times, thus making the com-
putation highly time-consuming. Instead, we use a two-step
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Feedback (power 
consumption and 
diesel usage) 

Admin selected 
DG run timing 

Selected 
DG run timings 
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Visitor input 

Figure 6: Administrator Interface of Collaborative Scheduler

Figure 7: Feasible state space representation of DG Optimiser

optimisation procedure that schedules the appliance running
time according to a heuristic, and then computes the optimal
DG running times using a dynamic programming approach.
Due to the complex dynamics of the battery and the shape of
the diesel efficiency curve, the optimisation problem for the
second step is non-convex and non-linear. Combined with
the set of constraints, dynamic programming was considered
to be the simplest option for obtaining the optimal solution.

The solution to the first step is motivated by the shape of
the generator efficiency curve shown in Fig. 2. Note that
the efficiency is highest when the generator is loaded close
to its capacity. Additionally, the total energy consumption
is constant, regardless of the optimisation procedure. There-
fore, we introduce a heuristic that aims to synchronize as
many appliances as possible, at any given time. This allows
the generator to shut down and save diesel in the gaps in be-
tween appliance demand times. The algorithm assigns appli-
ance running times one at a time, starting with the most con-
strained appliance (i.e with minimal padding between usage
duration and selected time period). Successive appliances
are then scheduled by maximizing the overlap with already
scheduled appliances. After one pass through the list of re-
quests, a schedule of all secondary loads and their aggregate
power profile is generated. This schedule is then conveyed
to the second step of the optimisation procedure.

In the second step, we schedule the DG using a dynamic
programming formulation. The load power profile has al-

ready been defined by the first step. This profile, in addition
to the primary loads, defines the constraints of the problem.
The scheduling of the generator may be subject to one fur-
ther constraint, depending on the circuitry for powering sec-
ondary loads. In the simplest case, both primary and sec-
ondary loads run from the battery, and the generator is used
only to recharge the battery. In this case, no additional con-
straint is imposed on the generator schedule. However, this
architecture implies a higher wear and tear of the battery.
It may also result in a demand profile that exceeds the cur-
rent capacity of the battery. Moreover, as electricity is freely
available from the battery at any time of the day, users may
tend to be less economical in their appliance usage. That’s
why we implemented an architecture where all secondary
loads are run directly from the DG, and the battery only pow-
ers smaller primary loads. The resulting design is incorpo-
rated into the mathematical formulation by constraining the
generator to be ON whenever one or more secondary appli-
ances are scheduled to run, according to the first step of the
optimisation. In Sec. 5, we show that the resulting deteriora-
tion in the optimal fuel cost is minor, compared to the gains
in battery life and the encouragement to users to be econom-
ical in their appliance usage.

The system state and dynamics for the battery bank em-
ploys the KiBaM model for lead acid batteries [14]. In
the KiBaM model, the battery is modelled as two inter-
connected charge wells, consisting of available charge and
bound charge. The state of each charge well is discretized
into M intervals, giving M2 possible charge state combina-
tions. The time interval of optimisation is discretized into N
intervals. The cost in each interval is the amount of diesel
consumed by the generator, which is 0 if the generator is
OFF, and is greater than 0 otherwise. In order to incorporate
the spool-up fuel consumption of the DG, a constant term
Fstart is added to the stage cost each time the DG is switched
ON from an OFF state. Let i denote the time index of a
time slot of duration τ, say 15 minutes. Let c(i) be the state
of charge of the battery at time i, and PB(c(i)) be the av-
erage power received by the battery if the DG was running
for τ starting from the battery state c(i). Let FB(c(i)) be the
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corresponding fuel consumption for the diesel generator, as
calculated from the relevant DG consumption data sheet [1].
Note that the energy received by the battery is a function of
its state of charge and dynamics in the battery model [14],
and hence drives the fuel consumption of the generator. As
explained previously, the battery lifetime depreciation is in-
cluded in the system model [6]. The objective function for
the optimisation procedure is,

J =
N

∑
1

ui [FB(c(i))+FS(i)+(1−ui−1)Fstart] . (1)

Here, ui ∈ {0,1} is the binary decision taken at time i,
controlling the operation or otherwise of the DG. PS(i) is the
expected power profile of secondary appliances in time step
i derived from the first optimisation step, and FS(i) is the cor-
responding diesel usage. The spool-up cost Fstart is counted
only if the DG is running in the current time period, and was
not running in the previous time period. It is assumed that its
initial state is u0 = 0. The optimal schedule can be computed
by using Dijkstra’s algorithm to solve a shortest path prob-
lem [5] from the initial state (i = 0 and battery charge equal
to the initial charge level) to each feasible final state (i = N
and the battery’s final state of charge lower bounded by its
initial state of charge). The optimisation algorithm begins
from a known initial state at i = 0. It explores each of two
options: battery charging (generator ON) or battery discharg-
ing (generator OFF), and arrives at two potential destination
states accordingly. The cost to reach each state is the diesel
consumed by the sequence of decisions culminating in the
current state of charge at the current time. This cost is saved
by the algorithm, along with the battery state in the previous
time step and the decision taken at the previous time step.
The algorithm proceeds in this way to the end of the time
window, where it is constrained to only consider final states
that replenish the battery levels to their starting values, or
higher.

The optimal control computation algorithm is given in
Algorithm 1. We define the following matrices of size
M2× (N + 1), with rows representing state of charge of the
two batteries and columns representing time. Note that the
(N +1)th column represents the end of the final time period.
• F , with each element containing the minimum fuel to

reach state ( j, i) where i is an integer, 0≤ i≤ N,
• C , with each element containing the charge level at time

step (i− 1) on the optimal path from (c(0),0) to ( j, i),
and
• D , containing the decision taken at time step (i−1) on

the optimal path from (c(0),0) to ( j, i).
This procedure is illustrated schematically in Fig. 7, with

time on the X-axis, and potential combinations of charge lev-
els on the Y-axis. The starting state is well defined, while
the acceptable final charge levels form a subset of all the
potential charge levels. By accounting for battery dynam-
ics, a feasible region such as the one depicted in Fig. 7
is automatically defined and explored by the dynamic pro-
gramming algorithm. If the level of each charge well in the
KiBaM [14] battery model is divided into M intervals, the
maximum number of reachable states at any time step is M2,

Recommended 
DG run timing 

Feedback (power 
consumption and 
diesel usage) 

Admin selected 
DG run timing 

Selected 
DG run timings 

Activity bar 

Visitor input 

Figure 9: Administrator Interface of Collaborative Scheduler

in the current time period, and was not running in the previous time
period. It is assumed that its initial state is u0 = 0. The optimal
schedule can be computed by using Dijkstra’s algorithm to solve a
shortest path problem [5] from the initial state (i = 0 and battery
charge equal to the initial charge level) to each feasible final state
(i = N and the battery’s final state of charge lower bounded by its
initial state of charge). The optimisation algorithm begins from a
known initial state at i = 0. It explores each of two options: battery
charging (generator ON) or battery discharging (generator OFF),
and arrives at two potential destination states accordingly. The cost
to reach each state is the diesel consumed by the sequence of deci-
sions culminating in the current state of charge at the current time.
This cost is saved by the algorithm, along with the battery state in
the previous time step and the decision taken at the previous time
step. The algorithm proceeds in this way to the end of the time
window, where it is constrained to only consider final states that
replenish the battery levels to their starting values, or higher.

The optimal control computation algorithm is given in Algo-
rithm 1. We define the following matrices of size M2⇥(N+1), with
rows representing state of charge of the two batteries and columns
representing time. Note that the (N + 1)th column represents the
end of the final time period.

• F , with each element containing the minimum fuel to reach
state ( j, i) where i is an integer, 0  i  N,

• C , with each element containing the charge level at time step
(i�1) on the optimal path from (c(0),0) to ( j, i), and

• D , containing the decision taken at time step (i� 1) on the
optimal path from (c(0),0) to ( j, i).

This procedure is illustrated schematically in Fig. 10, with time
on the X-axis, and potential combinations of charge levels on the
Y-axis. The starting state is well defined, while the acceptable fi-
nal charge levels form a subset of all the potential charge levels.
By accounting for battery dynamics, a feasible region such as the
one depicted in Fig. 10 is automatically defined and explored by
the dynamic programming algorithm. If the level of each charge
well in the KiBaM [14] battery model is divided into M intervals,
the maximum number of reachable states at any time step is M2,
and the number of decisions available at any state of charge is at
most 2. Thus, the maximum number of computations required to
find the optimum generator schedule is 2NM2. The computational
complexity thus scales linearly with the time dimension.

5 Results
5.1 DG Optimizer Evaluation

In this section, we estimate the benefits delivered by the optimi-
sation procedure using simulations that extrapolate from empirical

Algorithm 1 Optimal control computation

1. Initialize: Time i = 0, all elements of F set to • except for
initial state F (c(0),0) = 0, all elements of C and D set to
-1

2. For all i in {0,N �1}:
3. For all j such that F ( j, i) < •:

(a) Evaluate j+i+1, charge at time (i+1) with ui = 1
(b) Evaluate stage cost F+( j, i) from ( j, i) to ( j+i+1, i+1)

(c) If state ( j+i+1, i+1) satisfies problem constraints and
F ( j, i)+F+( j, i) < F ( j+i+1, i+1):

(d) **New optimal path found**
i. Set F ( j+i+1, i+1) = F ( j, i)+F+( j, i)

ii. Set C ( j+i+1, i+1) = j
iii. Set D( j+i+1, i+1) = 1

EndIf
(e) If PS(i) = 0:
(f) **DG in OFF state is feasible**

i. Evaluate j�i+1, charge at time (i+1) with ui = 0
ii. Stage cost F�( j, i) = 0 from ( j, i) to ( j�i+1, i+1)

iii. If state ( j�i+1, i+1) satisfies problem constraints
and F ( j, i)+F�( j, i) < F ( j�i+1, i+1):

iv. **New optimal path found**
A. Set F ( j�i+1, i+1) = F ( j, i)+F�( j, i)
B. Set C ( j�i+1, i+1) = j
C. Set D( j�i+1, i+1) = 0
EndIf

EndFor
4. EndFor
5. Find j⇤ such that F ( j⇤,N) = min j2Jfin F ( j,N), where Jfin

is the set of feasible final charge levels
6. Trace backward from C ( j⇤,N) and D( j⇤,N) to compute

optimal decision vector

and the number of decisions available at any state of charge
is at most 2. Thus, the maximum number of computations
required to find the optimum generator schedule is 2NM2.
The computational complexity thus scales linearly with the
time dimension.

5 Results
5.1 DG Optimizer Evaluation

In this section, we estimate the benefits delivered by the
optimisation procedure using simulations that extrapolate
from empirical data. DG and battery model (KiBaM) pa-
rameters used in this section were taken from vendor data
sheets. It is assumed that users use the interface described
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Figure 9: Cost sensitivity (a. Fuel cost, and b. Total cost) to variation in primary load

in Sec. 4.2 to communicate their secondary appliance usage
preferences. Each scheduling request includes the power rat-
ing of the appliance, the expected duration of usage, and the
acceptable time window of operation (i.e, selected time pe-
riod). A sample set of inputs is shown in Fig. 5, which
depicts 25 scheduling requests over the course of a day. The
earliest feasible time for any request is 6:00 am, and the latest
feasible time is 7:30 pm. Several such inputs were generated
for analysis: 4 input cases with 25 schedule requests each
(Case 25-1 to 25-4), and 3 input cases with 5 schedule re-
quests each (Case 5-1 to 5-3). The inputs were based on an
analysis of measurements taken for ten appliances at KBFSC
over three months.

Based on the description in Sec. 4.3, we compared the
costs associated with three possible architectures. First, to
run the generator whenever there is non-zero demand (with-
out any optimisation, which is how KBFSC currently oper-
ates). This option is referred as ‘Only DG’ in Fig. 8. Second,
it is possible to run all appliances from the battery, with the
generator being used only to optimally recharge the battery.
This option is referred as ‘Hybrid’. Finally, the third archi-
tecture runs all primary appliances from the battery, and all
secondary appliances directly from the generator. This op-
tion is referred as ‘C-Hybrid’, which implies a hybrid archi-
tecture constrained to operate the DG for all secondary ap-
pliances. The resulting total costs are compared in Fig. 8 for
all seven input cases. The total cost consists of the cost of
diesel used over the course of the day, as well as the amor-
tized depreciation in battery life because of its usage. Even
after including the cost of the battery, it can be seen that there
is a significant cost reduction in moving from the former ar-
chitecture to one of the two latter ones. While the C-Hybrid
case does not perform as well as the pure Hybrid case, it can
be noted that the increase in cost is very small. When taken
in context of the battery capacity costs and human factors de-
scribed in Sec. 4.3, this is likely to be an acceptable tradeoff.

The sensitivity of the optimal cost to the magnitude of the
primary load is depicted in Fig. 9. The value on the X-axis
is the mean primary load throughout the course of the day. It
is seen that the two hybrid architectures always have lower
diesel fuel cost when compared to the generator-only archi-
tecture. Note that the constrained hybrid case has higher fuel
cost than the pure hybrid case when the primary loads are
small (Fig. 9A). This is because of the constraint that the

generator must run whenever secondary loads are operating.
When this constraint is removed for the pure hybrid case,
the generator can push sufficient charge into the battery to
supply both primary and secondary loads, while still running
for a shorter duration of time. If we include the cost due
to a decrease in the battery life, the total cost for the hybrid
architectures is higher than that for the generator-only archi-
tecture, for large primary loads (Fig. 9B). The parity point
occurs at 2 kW. For primary loads higher than this value, the
decrease in battery life is too rapid to be offset by the reduc-
tion in the cost of diesel. At the expected primary load level
at KBFSC (1 kW), the expected cost savings are 33% for fuel
only, and 20.1% when the battery cost is included.

Finally, we consider the effect of incorporating the cost of
spooling up the generator (change from OFF to ON state). In
Fig. 10, we demonstrate the effect for the input case shown in
Fig. 5. The X-axis denotes the time of day, while the Y-axis
depicts the generator state (OFF/ON) in each 15-minute time
period. If the cost of starting the generator is ignored, the
optimisation procedure would produce a generator schedule
with 11 OFF to ON switches (blue circles in Fig. 10). When
a cost of 2 USD is assigned to each switch event, the opti-
miser instead produces a schedule that contains only 2 OFF
to ON switches (black stars in Fig. 10). We do not compare
the fuel cost for the two cases described here, because ignor-
ing the spooling cost of switching ON the generator is not a
realistic assumption.

Figure 10: DG cost analysis with and without switching cost
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5.2 Collaborative Interface Evaluation
We conducted cognitive walkthrough with 8 visitors and

4 administrators. The aim of this study is to evaluate the
usability of both the visitor and administrator collaborative
scheduler interface. The interface presented in Sec. 4.2 is the
final version that was deployed, which incorporates several
changes that were found through the cognitive walkthrough
evaluation.
5.2.1 Method

As both the visitors and administrators have to perform
specific tasks - scheduling appliances usage and scheduling
DG run hours, respectively - we used a task-specific quali-
tative evaluation method, Cognitive Walkthrough [20]. The
participants were asked to think aloud through out the study.
Visitors were asked to schedule their appliance usage for the
next day in basic mode with minimal input (only activity se-
lection and ‘submit’), and in advanced mode with maximal
customization (including activity selection, duration selec-
tion, time period selection, and ‘submit’). Similarly, admin-
istrators were asked to login, schedule DG run hours for the
next day, with minimal inputs and with maximal customiza-
tion.

Similar to the interviews, all the walkthroughs were con-
ducted in the dining area of KBFSC, audio-recorded and
later transcribed in English. Rest of the analysis details for
walkthroughs is the same as semi-structured interviews (Sec.
3.1).
5.2.2 Participants

Eight visitors (4 male, 4 female, average age=29.1 years,
sd=11.7) participated in the study. The visitors were from
different locations - 5 from USA, 2 from Brunei and 1 from
Indonesia. All the visitors have an educational background
in Ecology; six of the visitors were PhD students, one was
a Research Assistant, and one was a Professor. All of them
were visiting KBFSC for a 10-days long field study Ecology
course; four of the visitors have visited a field study center
before. All were aware of their monthly electricity bills and
per unit energy pricing at their residence. All the visitors
answered in neutral to strongly agree (on a 5-point Likert
scale) when asked about their orientation towards conserva-
tion, with average score of 3.8 (sd=0.6). With regards to
DG run hours at KBFSC, all (except one, who selected ‘runs
for optimal hours’) the visitors selected ‘runs more than re-
quired’. In addition, all the visitors were Internet savvy, with
an average self-score of 4.2 (sd=0.8), on a 5-point Likert
scale, with 1 lowest and 5 highest in terms of Internet us-
age.

Four administrators (2 male, 2 female, average age=41.5
years, sd=5.1) participated in the study. Their education level
varied with 2 having Bachelor’s degree, 1 having Master’s
degree and 1 completed secondary school. With regards to
their orientation towards conservation, all rated themselves
high with average score of 4.5 (sd=0.5). All, except one,
were Internet savvy. (Note: Two of these administrators even
participated in the semi-strcutured interviews.)
5.2.3 Visitor Interface Findings

Below are the key findings from the visitor collaborative
schedule interface:

(i) Addition of 5-leaf Green Level: In the initial design,
based on the activity, duration, and time period selection,
users were provided feedback only through their activity’s
contribution towards the energy consumption, diesel usage,
and carbon dioxide production, along with the total values
for each (lower portion of Fig. 4). During the cognitive
walkthrough, we found participants struggling to understand
the impact of changing activity, duration, or time period se-
lection, as the feedback numbers kept changing according
to any change in selection. It was hard for the participants to
keep track of the three feedback numbers, to identify the best
schedule selection. In addition, there was no goal to achieve,
i.e., the upper limit of the “goodness of selection” (V5) was
not clear. Hence we decided to add a new feedback parame-
ter, ‘greenness’ of the activity (using 5-leaf green level, Fig.
4). This allowed the visitors to try and achieve maximum
number of green leaves during their scheduling selection.

(ii) Duration Selection: In the intial design, duration se-
lection used to be a text box with the number of minutes
written inside it. On tapping it, a pop-up opened up to select
any number of minutes. With the cognitive walkthrough, we
found that participants were having difficulties in changing
the duration, “what to click? should I click the box?” (V4).
Moreover, visitors mostly chose period of 15-mins interval
(such as 15 mins for shower, 30 mins for washing machine,
45 mins for dryer). Hence we decided to replace the number
selector pop-up with the ‘+’ and ‘-’ button, allowing users
to quickly increase or decrease the duration of an activity
in steps of 15 mins (minimum: 15 minutes, maximum: 180
minutes).

(iii) Selected Time Period Animation: Using the handle-
bars provided on both sides of the selected time period, a
user can provide his/her time period flexibility of perform-
ing the activity. The participants complained that, “though
I selected 2 pm to 5 pm, which is also showed on the text
below, the (grey-colored) selection actually shows 2:10ish to
4:55ish” (V7). In the intial design, the selected time period
window used to show the visitor’s selection, and the text be-
low used to round it up to the nearest time window, thus a
2:05-4:55 pm or 1:55-5:05 pm selection was written as 2-5
pm. In the updated interface, as soon as the handlebars were
released, the selected time period automatically expand, re-
duce, and/or transition to the nearest full time period win-
dow, such that the text and actual (grey-colored) selection
were consistent.
5.2.4 Administrator Interface Findings

Below are the key findings from the administrator collab-
orative schedule interface:

(i) Selected DG Run Timings Visualization: In the initial
version, the top bar showing DG run timings was not present.
The selected DG timings were only shown as numbers on
the top right (Fig. 6). During the cognitive walkthrough, we
found that administrators require multiple attempts to select
a non-overlapping time period on the activity bar using han-
dlebars. As A3 pointed, “it is hard to read the time here (on
the top right), while making the selection here (in the activ-
ity bar).” In the revised interface, we added a selected DG
run timings visualization at the top of the activity bar, thus
guiding the user in selecting non-overlapping period.
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(ii) Recommended DG Run Timing Star: Administrators
showed interest in keeping the recommended DG timings,
stating that “the system must have made intelligent deci-
sions” (A2). However, after allotting multiple other DG run
timings, the participants were not able to distinguish be-
tween the recommended versus self-selected DG run tim-
ings. Hence we added a green star to show the recommended
DG run timings. Moreover, removing an administrator se-
lected DG run timing is a 1-step process (clicking on the ‘X’
button next to the text), while removing a recommended DG
run timing is a 2-step process with a comfirmation pop-up as
the second step.

6 Discussion
The system and methodology described in this paper does

not explicitly account for schedule disruptions, which can be
caused by a discrepancies between user input and actual us-
age. It is difficult to model the stochasticity introduced by
this aspect, because the type and magnitude of discrepancy
differs from one user to another. A direct method to account
for stochasticity would be to implement a robust optimisation
framework. This would involve replacing the minimisation
in (1) with a minimax formulation [17], where the worst case
(maximum) fuel cost is minimised. It is expected that the
consequent modification required to the dynamic program-
ming algorithm would be minimal. However, formal imple-
mentation of this methodology and its evaluation are a part
of future work.

In this work, we demonstrated the value of implementing
collaborative optimisation techniques for energy resources in
a microgrid setting. However, the same methodology is po-
tentially applicable to a wide spectrum of instances in the
energy space. The core idea of the design effort was on pro-
viding feedback to consumers about the impact of their own
activities on collective consumption. In addition, the system
also provided suggestions about optimal scheduling of user
demand. Implicit in this design is the coordination of energy
consumption across users who may or may not be able to
interact directly with each other. As such, the collaborative
interface idea can even be applied to systems where the users
are not collocated. Some examples of minimising ecological
impact through coordination of activities can include, (i) Op-
timal scheduling of commercial shuttle services by having
users log their planned times of travel to/from work for the
next day, and, (ii)Planning of thermal storage (for example,
pre-cooling) in office premises by using forecasts of building
occupancy.

7 Conclusions
This paper describes the solution designed for reducing

diesel consumption at KBFSC, a remote ecological field
study centre in Brunei. The system employed a battery bank
to increase power availability to primary loads and a collabo-
rative scheduler for access to power for secondary loads. An
optimiser ensures that the DG run at the appropriate times
to minimize fuel consumption while keeping the batteries
charged and meeting user needs. Simulations modelled on
real data suggest that our system could reduce diesel con-
sumption by up to 33.3% and total cost by 20.1%. More-
over, our proposed system can provide power to the centre

uninterruptedly, as oppose to only ≈9 hours available in the
past.
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