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ABSTRACT
The commercial building sector constitutes a signi�cant share (18%)
of global energy consumption; HVAC accounts for 40% of that
consumption. Thus, energy conservation in commercial buildings
can help with reducing the operational cost, as well as decreasing
global energy consumption. In this paper, we report� ndings from
a� eld trial conducted in Luleå (Sweden), to reduce the energy
consumption of a commercial o�ce building, by varying the HVAC
set-point temperature. We developed a data-driven model of the
building’s energy consumption to estimate baseline. The building
model was further used for designing the� eld trials by performing
a simulation of the energy consumption under varied set-point
temperature schedules. Based on the simulation results, a two week
trial was conducted. We found that overall energy consumption of
the building can be reduced by 5.23% per �C reduction of set-point
temperature. Moreover, we also collected thermal comfort feedback
from the building occupant, and found that the comfort range of
the occupants can be extended to the range of 21.5 �C to 23.5 �C
than the currently used range of 22.0 �C to 22.5 �C

1 INTRODUCTION
Global consumption of energy has been increasing rapidly. The
commercial sector constitutes a signi�cant share (18% in 2012 [5]) of
overall energy consumption. The residential consumption share is
higher at 21%; however, because only 60.3% of the world population
is employed [4], commercial building consumption is higher at an
individual level. In commercial buildings, 40% of the total energy
is consumed by HVAC [5]. Reducing commercial energy demand
would not only help in reducing global energy consumption, but
also signi�cantly decrease the building operational cost.

Oneway to reduceHVAC energy consumption, and hence overall
building energy need, is by reducing the HVAC’s set-point tem-
perature for buildings that requires heating. Any variation in the
set-point temperature will impact the thermal comfort of the em-
ployees working in that building. Often, the set-point temperature
of o�ce building in Sweden is� xed at 22 �C, which results in zone
temperature of the building to lie in the range of 22 �C to 22.5 �C.
By modulating the set-point temperatures, we can alter the energy
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consumption by leveraging the� exibility in the thermal comfort
range of people residing in the building.

In this paper, we present results from a pilot site located in Luleå,
Sweden (65.59oN, 22.11oE) . Located at around 150 km from the arc-
tic circle, it has a subarctic climate with mild summers and extreme
winters with temperature range of �10 �C to �15 �C, occasionally
dropping to �40 �C [16]. The city has centralized district-heating-
and-cooling (DHC) system, consisting of a network of underground
pipes, valves and pumps to supply hot water to every building in the
city for the purpose of space heating and hot tap water generation.
The DHC of Luleå is managed and operated by Luleå Energi AB.
In this work, we use the energy and temperature data from one of
the o�ces of Luleå Energi AB. The o�ce building has three� oors.
We have the zone temperature data for all the three �oors and the
power consumption at the building level. We collected this data at
a high frequency of 1 sample per minute. For the� eld trials, we
varied the set-point temperature of this building to understand its
impact on energy consumption and occupants’ thermal comfort. To
compute reduction in energy consumption, we developed a data-
driven building model to estimate the baseline energy consumption.
Our model was found to predict energy consumption with an error
rate (N-RMSE) of 12%. Varying set-point temperature was able to
achieve an energy consumption reduction of 5% per �C. Moreover,
occupants of the building reported being comfortable in the range
of 21.5 �C to 23.5 �C.

In this paper, we present a comprehensive study of an o�ce
building situated in Luleå, Sweden. We develop a simpli�ed mode
of the building to simulate the energy consumption to plan for the
actual tests. In particular, key contributions of this paper are:

(1) We develop a data-driven model of a real-world o�ce build-
ing to perform the baseline estimation of the thermal load
of the o�ce. Further, the model is also used for planning the
tests by estimating the energy consumption under varied
indoor zone set-point temperatures.

(2) Based on simulations, we conducted the real trial in the o�ce
by changing the zone set-point temperatures. Zone temper-
ature dictates the overall thermal energy consumption form
the underground hot water grid.

(3) Finally, we collected and analyzed the average comfort ex-
perienced by the occupants of the building. We installed
several feedback point in the o�ce to collect this data from
the occupant regarding their average comfort experienced
on the day when tests are being conducted.

Outline for the rest of this paper is as follows. In Section 2, we
provide an overview of related work. In Section 3, we propose a
simple data driven approach for modelling the power consumption
of the pilot building. Section 4 presents the simulation results form
the developed building models and the results from the real world
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Figure 1: Comparing space heating power consumption
from the proposed machine learning methodologies

�eld trials conducted at the pilot site. In section 5, we present the
analysis and inferences form the thermal comfort feedback data
collected from the occupants in the building. Finally, conclusions
and a discussion on future work are provided in Section 6.

2 RELATEDWORK
There is a body of research work on di�erent aspects of build-
ing modeling and the spectrum of research varies from physics-
based modeling (white-box modeling) to data-driven based approach
(black-box modeling). White-box models require detailed param-
eters such as heat transfer coe�cients, wall thickness, materials
used, incident solar insolation, etc. [1, 8, 9]. This approach can
achieve simulations close to reality, however, they are large and
complicated models and therefore, their use in optimization and
control methodologies is limited. On the other hand, black-box
model does not consider the underlying physics and the building
dynamics. This approach is used for speci�c aspect of the building
such as predicting the internal zone temperature [10, 13] which,
however, may not be able to provide an accurate estimate of the
power consumption. Similarly, models developed for learning the
energy consumption pro�le of the building [6, 7] may not be good
at predicting internal zone temperatures. Finally, hybrid model-
ing paradigm called grey-box modeling which models the building
based on the physics and learns the coe�cients from the data. For
example, Vishwanath et al. [15] used a simple grey-box-modeling
to achieve peak load reduction up to 30%. A simulation carried
out with various demand and supply side strategies to reduce en-
ergy consumption [14] also uses grey-box model for their buildings.
While this provide interesting insight into the building at a varied
details, previous work have not demonstrated a real-world appli-
cation of their work for energy and/or cost reduction. We believe
that real-world implementation of the work is necessary to have a
practical relevance of the research and we seek to address this gap.

There have been several� eld trials in the context of reducing
energy consumption in buildings. A review of pre-cooling work
for energy and cost reduction conducted until the early 2000s is
available in [3]. Newer studies [2] use a model predictive control
(MPC) based algorithm to demonstrate energy savings of 30%. How-
ever, it was conducted in a small controlled setting of a lab which
is not a true representation of a real-world building. In this paper
we seek to address these gaps by conducting a� eld trials of energy
conservation by changing the indoor zone set-point temperatures
in a real world o�ce building in Luleå, Sweden.

ML RMSE N-RMSE
Approaches Train Test Total Train Test Total

Linear regression 24.8 16.0 23.3 0.16 0.11 0.15
Random forest 9.6 18.5 12.0 0.06 0.12 0.07
Table 1: Comparison of di�erent error metrics (RMSE and
N-RMSE) for proposed machine learning methodologies

3 BLACK-BOX BUILDING MODELING
In this section, we describe the consumption modeling methodolo-
gies that we explored in this work. Using the� rst law of thermody-
namics for the thermal energy balance for a zone [13], we can write
the energy stored in the thermal inertial of the buildingCdTz (t)/dt
as the sum of energy gained from other sources as,

C
dTz (t)
dt

= Qin (t)| {z }
Internal heat

+ PAC (t)| {z }
HVAC power

+
T1(t) �Tz (t)

R|           {z           }
Heat from ambient

(1)

We can observe from (1), that under steady state, HVAC power is
proportional to the di�erence in ambient and zone temperature.
We will use two simple machine learning techniques for modeling
the power consumption:

(1) Linear Regression (LR): It is used for modeling relationships
where dependent variable can be written as a linear combi-
nation of the independent variables [11].

(2) Random Forest (RF): It is a bootstrapping algorithm which
uses a simple decision tree (CART) model as a weak classi-
�er [12].

We have implemented the aforementioned approaches with three
features. Inspired from (1),� rst feature is the di�erence in ambient
and set-point temperature. Note that, since zone temperature is
determined by the controllers and only input is the set-point temper-
ature, we are using that in the feature instead of zone temperature.
Apart from this, 24 categorical values for hour of day and categori-
cal values for weekday/weekend are used as additional features to
capture the variations that are not related to temperature.

To quantify the e�cacy of the proposed methodologies, we
will use the root-mean-squared-error (RMSE) and normalized-root-
mean-squared-error (N-RMSE) as the error metric de�ned as:

RMSE =
r⇣ÕK

k=1[P(k) � bP(k)]2⌘ /K (2)

N-RMSE =

r⇣ÕK
k=1[P(k) � bP(k)]2⌘ /K
⇣ÕK

k=1 P(k)
⌘
/K

(3)

The black-box model was trained using the data collected from
the pilot building. We have used data from 1st November 2016 to
20th December 2016 for training and the data from 21st December
onwards for testing. However, in order to avoid the cluttering of
plots, we have shown the results only from 15th to 25th December
in Figure 1. Table 1 summarizes the results obtained from the black-
boxmodelling. Since random forest is giving the best results, wewill
use it for baseline estimation and simulations in the next section.
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4 ENERGY REDUCTION EXPERIMENTS
In this section, we present the results from the simulations and the
�eld trials performed at the pilot building. The zone temperature set-
point was varied within the range allowed by the building manager,
i.e., 20 �C to 23 �C. The simulation started on Monday, 9th January
2017, and lasted for two weeks till Monday, 23rd January 2017.
Figure 2 shows the exact time series of the set-points used in the
simulation. Figure 2 also plots the zone temperature measured by
the sensors and its baseline value when set-points are kept at their
default value.

6th 8th 10th 12th 14th 16th 18th 20th 22nd 24th 26th
19

20

21

22

23

24

Te
m

pe
ra

tu
re

 [o C
]

Setpoint: Default
Setpoint: Default - 1
Setpoint: Default + 1
Setpoint: Default - 2

Zone temperature     Zone temperature with default setpoint

Figure 2: Set-point times series used in the random-forest
black box model for simulating the energy consumption

4.1 Simulation
Results from the simulation is presented in Figure 3. First, we ran
the black box model with the default set-point temperature to get
the baseline estimate of the power consumption as shown in Fig-
ure 3. Next, set-point time series shown in Figure 2 was used to
estimate the power consumption under the simulated setting of
varied set-point temperature. Figure 3 also plots the di�erence in
estimated power consumption between the simulated and the base-
line setting. It can be observed that, higher set-point results in
increased power consumption and vice-versa. The average power
saving for a duration from t1 to t2 was calculated using the follow-
ing expression:

Saving =
Õt2
t=t1 P

⇤
AC (t) � PBaselineAC (t)Õt2
t=t1 P

Baseline
AC (t)

(4)

Where, P⇤AC (t) is the power consumption either in simulations
or in trials, depending on the context, i.e.,

P⇤AC (t) = PSimulation
AC (t) or P⇤AC (t) = PT r ialsAC (t)

For the case of simulations, average change in overall power
consumption as per (4) is 5.23% per degree Celsius. Same metric
will be used for� eld trials as well.

4.2 Field trials
Results obtained from the simulations demonstrate the potential of
set-point temperature manipulation for reducing the energy con-
sumption. However, real world implementation of any simulated
results is necessary to demonstrate the true e�cacy of the proposed
methodology. In order to do so, trials were conducted in the Luleå
o�ce in accordance with the set-points schedule followed in the

simulation. The set-point temperatures were changed at 4:30 pm
in the evening towards the end of o�ce hours. This will ensure
that, by start of next working day, the zone temperature will be-
come stable around the new set-point. Stable zone temperature
will result in a consistent thermal comfort of the occupants and
therefore, the feedback data collected from the o�ce employees
about their thermal comfort will be more reliable. Note that, even
in the simulations results shown in Figure 2 and Figure 3, set-points
are changed at 4:30 pm so as to match the real world setting.

Results from the� eld trials are presented in Figure 3 where the
ground truth for the power consumption is shown along with the
simulation and baseline results. Inferences form the� led trials are
similar to the ones obtained from the simulations since, we can
observe that the ground truth matched almost exactly with the
simulated values. RMS error in the power consumption is 7.81 kW
and percentage error is 4.97%. Average power saving from 14th to
16th January is 18 kW which is 10% of the power consumption. On
the other hand, for 11th to 13th January, power consumption is
increased by 4.7% as compared to the baseline.

Overall, the power consumption changes by 5.1% for a change
of 1 �C in the set point temperature around the default set-point.
Therefore saving can be further increased up to 20% if we reduce
the set point by, for example, 4 �C and operate the controllers
around 18 �C.

5 THERMAL COMFORT STUDY
Studying the thermal comfort of the occupants is an integral part
of any study where indoor temperature is subject to manipulation.
One certain way to reduce the energy consumption is to simply
turn o� the heating system. However, this will render the building
inhospitable because of extreme level of thermal discomfort faced
by the occupants. Therefore taking feedback about the thermal
comfort from the building occupants is vital to the research work
being conducted.

To address the requirements of this project, a software was devel-
oped that allowed the building occupants to provide live feedback
on their comfort index. The software has� ve buttons in the form of
emoticons. The comfort-index denotes the integer value correspond-
ing to each emoticon ranging from -2 for too cold to +2 for too
warm. During the experiments, nine touchscreens were deployed (3
per� oor) with the software installed in them.When a user provided
the comfort feedback, following things were logged: Timestamp,
value associated with the pressed button and, zone temperature.

In total, 1790 data points were collected from the deployed feed-
back devices. However, there were several instances of duplicate
data logs. For instance, 3 data points with the same numerical value
and form the same device was logged together within an interval of
only 5 seconds. Therefore, for the purpose of our analysis, duplicate
instances in the logged data was cleaned up by using a 10 second
window, resulting in 1160 unique data points. Figure 4 (Left) shows
the histogram of the cleaned-up feedback data. The comfort index
of ‘0’ was registered most frequently in the data, implying that most
occupants were comfortable and, relatively less people complained
of feeling too warm/cold. Figure 4 (Right) shows the average value
of comfort where, the data points were collated into buckets based
on the corresponding indoor temperature with a granularity of
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Figure 3: Comparison of baseline, simulated and experimental power consumption for the Luleå energy o�ce building.

-2 -1 0 1 2
Comfort Index

0

150

300

450

600

750

Fe
ed

ba
ck

 c
ou

nt

Too warm
Little warm
Comfortable
Little cold
Too cold
Feedback

21 21.5 22 22.5 23 23.5

Zone Temperature [oC]

-2

-1

0

1

2

C
om

fo
rt 

In
de

x

Too warm
Little warm
Comfortable
Little cold
Too cold

Whole Building
Floor 1
Floor 2
Floor 3

Figure 4: Occupant comfort study: Le�: Histogram of the thermal comfort feedback data received Right: Average value of
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0.5 �C We can observe the gradual and monotonic increase in the
average comfort value as the temperature increases. Further, this
value lie mostly near ‘zero’, which means that occupants are feeling
mostly comfortable during the duration of experiment. Pearson
correlation coe�cient between the zone temperature and the com-
fort values is 0.23 for the overall data and 0.18, 0.27 & 0.28 for 1st ,
2nd and 3rd �oor respectively. The data analysis shows that occu-
pants are comfortable with temperatures in the range of 22.5 �C
to 23.25 �C which can allow for some pre-heating to shift the peak
load power consumption. Similarly, users are able to tolerate tem-
peratures up to 21 �C without� nding it too cold. Therefore, the
feedback data analysis directs us to believe that comfort range of
the users can be expanded to lie in the range of 21.5 �C to 23.5 �C
than the currently used range of 22.0 �C to 22.5 �C.

6 CONCLUSIONS
In this paper, we have performed a� eld trial in an o�ce build-
ing to reduce the energy consumption. We proposed a data driven
paradigm which used historical data for modelling the energy con-
sumption in the pilot o�ce with accuracy being greater than 90%.
This model was then used for baseline estimation of the power
consumption and for planning the� eld trials by performing a sim-
ulation of the energy consumption by the building under varied
set-point temperature schedules. The simulations suggested that
about 5% energy can be saved if indoor set-point temperature is
lowered by 1 �C. Results obtained from the� eld trails matched the

simulations and energy consumption was indeed reduced on av-
erage by 5.1% per �C. These results suggest that over all energy
savings can be as high as 20%–25% if we reduce the set-point tem-
peratures by 4 �C to 5 �C by operating near a set-point temperature
of 18 �C. An important part of this research work involved collec-
tion and analysis of occupant feedback data about their thermal
comfort. During the trials with altered set-point temperatures, we
found that, people are willing to tolerate a range of indoor tem-
peratures without� nding it uncomfortably warm or cold. As seen
across the three� oors, for temperatures ranging in between 21.5 �C
to 23.5 �C, the deviation in the average comfort value is less than
one suggesting a reasonably comfortable indoor environment.

While the study has focused only on the temperature, normally
the user comfort also includes aspects such as humidity, air speed,
etc. Furthermore, as the experiments were conducted in a single
season, the user preferences in other seasons might di�er. There-
fore, future direction of this work can address the aforementioned
opportunities to conduct a more diverse and comprehensive study.
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