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Location awareness of people inside commercial 
establishments can help with occupancy-based dynamic 
energy management and indoor navigation. In this paper, 
we propose MobiCeil, a novel phone-based indoor 
localization technique. The proposed technique is offline, 
automated, and uses image captured from phone’s camera 
to identify the unique ceiling structure of any particular 
location in the office building. The proposed method is 
based on these assumptions: (a) in office, employees tend to 
keep their phones lying on the table, and (b) the layout of 
ceiling landmarks in a portion of the ceiling structure (as 
captured by the phone’s camera on the table) is unique. We 
validated these assumptions by checking the phone 
placement of 47 employees randomly at their cubicle or 
meeting room, and collecting ceiling layout data from 18 
meeting rooms and 6 cubicles in an IT office building. To 
evaluate the performance of MobiCeil, we collected images 
of the ceiling as seen by the phone (front and back) camera 
in three different rotations of the phone placed on the table, 
to capture a total of 960 ceiling images. Our approach 
achieved an accuracy of 88.2% for identifying locations, 
with a low computation time of 2.8s per image. 
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H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous 
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An Indoor Positioning System (IPS) identifies and tracks 
the location of object/people inside a building. Location 
awareness positively impacts the quality of operation in 
commercial establishments, specifically occupancy-based 
load scheduling in commercial buildings. Office buildings 

consume 40% of the overall energy consumption [1]. Thus, 
enhancing operational efficiency of commercial buildings 
have dual advantage of cost mitigation and environmental 
sustainability. Employee occupancy information can enable 
various applications, such as dynamic thermal load 
management, optimizing seat allocation, and sending 
printouts to the nearest printer. Moreover, it can also help 
with indoor navigation, e.g., to find the way to the nearest 
washroom or fire exit, or to a particular room or cubicle. 

For outdoor environments, GPS-based positioning system 
[2] offer the maximum coverage, and hence are widely 
used. However, GPS-technology fails for indoor 
environments, due to lack of line-of-sight communication 
of the device with the satellites. Indoor environments are 
highly complex. Occurrence of multi-path effects due to 
building geometry and mobility of people, along with errors 
caused by interference from other wired and wireless 
networks in the vicinity, pose significant challenges in the 
design of indoor positioning systems. 

Several techniques for indoor positioning have been 
proposed, based on infrared (IR) [3, 4, 5], radio-frequency 
identification (RFID) [8], wireless network (WLAN) [9, 
10], Bluetooth [11], and camera image analysis [12, 13, 14, 
15, 16]. However, IR-based solutions and sensor networks 
require additional hardware installation, while RFID-based 
systems are less accurate due to limited range and multi-
path effects of the building. Vision-based techniques tend to 
be computationally intensive making them unsuitable for 
real-time applications. Therefore, design of an IPS involves 
a tradeoff between computational requirements, 
infrastructure deployment and positioning accuracy. 

With the observed growth in smartphone penetration, and 
increasingly sophisticated inbuilt sensors and computational 
capabilities of modern smartphones, there is an opportunity 
to explore smartphones as a platform for IPS. WiFi and 
Bluetooth based solutions for indoor localization using 
phones have been investigated [17], but not commonly used 
due to low accuracy. With increasing phone size, people 
tend to keep their phones lying on the table when the phone 
is not in use, with the phone’s front or rear camera facing 
the ceiling. From our collected data, we found 76.5% 
employees keeping their phones on the table at their cubicle 
or meeting room. This image from the phone’s camera can 
be used to identify the phone’s location, using the unique 
ceiling layout. We collected ceiling data of 18 meeting 
rooms and 6 cubicles of an office building and found that 
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each 3x3 tiles (equivalent to the number of tiles captured 
using phone’s front camera on the table) layout was unique. 

In this paper, we propose MobiCeil, a novel phone-based 
offline, low complexity, automated indoor localization 
technique. It uses image captured from phone’s camera to 
identify the unique ceiling structure of any particular 
location in the office building. On a dataset of 960 ceiling 
images, our proposed approach achieved an accuracy of 
88.2% for identifying locations, with 2.8 seconds of 
computation time.  

�&���&$	'�� 	
Several technologies have been explored to design indoor 
location sensing systems. We will discuss the three most 
common classes of IPS here: Infra-Red (IR) based, Radio 
Frequency (RF) based, and Vision-based technologies. 

Infra-Red (IR) based positioning systems are the most 
commonly used. Typically, IR-based system provides 
absolute position estimates by establishing line-of-sight 
communication between transmitters and receivers. Active 
badge system [3] performs position sensing by sending an 
IR signal to one or more sensors located in a room or a zone 
and updates location information on the central server. 
Firefly system [6] models motion of an object by locating 
IR emitters in the form of small tags. Although IR sensors 
are cheap, the additional hardware requirement increases 
the cost significantly, and adds to the complexity of 
hardware deployment. Also, the limited coverage area 
negatively impacts the accuracy of IR-based systems. 

Radio frequency (RF) waves can travel through walls and 
human bodies, thus significantly increasing the coverage 
area. Typically, RF-based positioning systems reuse the 
existing RF infrastructure (such as WLAN, Bluetooth), 
making the deployment of RF systems convenient and 
inexpensive, compared to IR-based systems. WLAN-based 
positioning systems [8, 9, 10] use the existing wireless 
network for detecting position in indoor environments using 
the triangulation technique. However, such solutions suffer 
from major performance issues due to the complexity of 
indoor environments, and are also limited by the 
requirement that objects being tracked needs to be equipped 
with WLAN technology. Bluetooth [11] technology has 
also been explored as a potential IPS platform, but due to its 
limited range and delay involved in the response time, it has 
not been adapted. 

Vision-based positioning systems does not require the 
objects being tracked to be equipped with any sensor. Easy 
Living [12] uses two stereo cameras to identify objects and 
even estimate their position. Other techniques such as 
ambience fingerprinting [13], SLAM [14], 3-D modelling 
using RGBD-cameras [15] attempts to model the indoor 
environment by tracking landmarks in an iterative manner. 
However, deploying cameras in a large area is expensive. 
The ubiquity of smartphones with inbuilt high resolution 
cameras has driven the research of using them for indoor 
positioning. Most of such research work makes an implicit 

assumption that location of the smartphone is a good proxy 
for the location of the person using the phone. We agree 
with the assumption and use it in our proposed technique as 
well. Ravi et al. [16] proposed a system wherein people 
carry phone as a pendant to take images for location 
identification. Users mentioned discomfort in carrying the 
phone as a pendant. LuxaPose [21] use modified LEDs to 
encode their locations in optical pulses. It requires extra 
hardware to be deployed on the ceiling for indoor tracking 
[21]. Furthermore, phones have limited computational 
capabilities, thus indoor localizer systems requiring 
extensive computations usually depends on external 
computational infrastructure to provide real-time location 
information. 

In this work, we propose a phone-based indoor positioning 
system using vision-based technique, that requires low 
computation which can easily run on a smartphone.  

�(&	�����&��	�)��&�	���%�*���#�	
The MobiCeil system utilizes smartphone when it is lying 
idle on the table to capture images using the phone’s front 
or rear camera (whichever is facing the ceiling). The 
proposed approach is based on three key observations. First, 
usually office buildings have a standard set of ceiling 
landmarks, such as HVAC vents, lights, motion sensors, 
microphones, WiFi routers, etc. This reduces the 
complexity of landmark identification as the search space 
gets reduced significantly. Second, ceiling design of 
different rooms or cubicles have a tiled layout (Fig. 1), 
wherein the layout of landmarks in a portion of the ceiling 
structure is unique. This ensures no ambiguity in 
identifying location corresponding to the input ceiling 
image. Third, with the increasing phone size, employees 
tend to keep their phones on the table while working in 
their cubicle, or brainstorming in the meeting room. To 
validate these observations, we collected two different 
datasets. 

�������	��!���	$���	
Two researchers manually collected ceiling layout data 
from 18 rooms and 6 cubicles in an IT office building. All 
18 meeting rooms in a particular floor were used. The 
ceiling layout has a tiled design with each tile measuring 
1.9ft x 1.9ft. The researchers noted down the landmarks on 
the ceiling (of height 8.3ft from floor), thus creating a 
matrix of integers for each meeting room and cubicle, with 
each integer representing a tile landmark. We call this 
ceiling pattern matrix (Fig. 1). 

From the ceiling layout data, we found that each meeting 
room had 36.75 tiles on an average (standard deviation = 
14.5, minimum = 20, maximum = 70 tiles/room). For 
cubicles, 16 tiles in a 4x4 ceiling layout just above the 
cubicle were noted. In total, across the rooms and cubicles, 
17 unique landmarks were identified. Each landmark was 
assigned a unique integer between 1 to 17. The three most 
commonly observed landmarks were empty tiles (30.8%), 
HVAC vents (12.3%), and lights (16.5%, consisting of 
3.5% small lights, 5.6% medium lights and 7.4% big 
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lights). Other prevalent landmarks were sprinkler (5.3%), 
audio speaker (3.3%), smoke detector sensor (4.4%), 
motion sensor (3%), and wireless network router (2.3%). 
Each room had 10.53 distinct landmarks on an average 
(std=1.2, min=9, max=14), while each cubicle had 7.8 
distinct landmarks (std=0.75, min=7, max=9). On analyzing 
this data, we found that no 3x3 sub-matrix of the matrix 
representation of the complete ceiling layout, matches with 
that of the other. This verifies our assumption of uniqueness 
in ceiling layout across rooms and cubicles. 

&+,��!��	*����	*����+���	$���	
We collected data to validate our assumption that 
employees tend to keep their phones lying on the table 
while working in office. Two researchers randomly went 
around the office (at 11 am) and noted the phone position of 
47 employees – 25 of them were working in their cubicle, 
while 22 were found to be working in 6 different meeting 
rooms in a group of 3-5 people. From this data, we found 
76.5% employees (19 out of 25 employees in their cubicle, 
and 17 out of 22 employees in meeting rooms) had their 
phones lying on the table, hence proving our assumption. 

�(&	�����&��	�)��&�	��-����(�	
The MobiCeil system use the images captured by the 
smartphone’s camera as input (Fig. 1). In addition, the 
system requires two static input resources that needs to be 
provided only once during the setup – (a) multiple images 
from different perspective of each ceiling landmark, and (b) 
ceiling pattern matrix of each meeting room and cubicle 
(Fig. 1). The database of images of ceiling landmarks is 
needed for landmark recognition. Ceiling pattern matrix can 
be conveniently obtained manually, or can be also obtained 
from the ceiling layout design provided by the 
architect/designer to the building management authorities. 
Using the input image and static input resources, the system 
outputs a room or cubicle number. 

The proposed algorithm (Fig. 2) consisted of three major 
components. The initial step involved obtaining gridlines to 
extract each tile in the input ceiling image. After that, the 

landmark on each tile was identified to obtain a query 
matrix representation of the image. Finally, this query 
matrix of the input image was queried over the dataset 
containing the ceiling pattern matrices of all the meeting 
rooms and cubicles under consideration. The search query 
involved finding the meeting room or cubicle having a 
ceiling pattern matrix containing the query matrix as a sub-
matrix. 

Tiles Extractor: Under the assumption of a tiled ceiling 
layout, we attempt to find quadrilaterals in the ceiling 
image using parallel gridlines representing a tile. To extract 
lines in an image, we used Hough transform [18] (Figure 2). 
Note: If the wide-angle of phone’s camera adds noticeable 
distortion, the images need to be rectified. In our case, no 
rectification was needed. Most of the images contained 
many spurious lines, thus requiring further processing to 
filter out gridlines. The lines obtained can be divided into 
two sets of parallel lines, S1 and S2, with each line in S1 
being perpendicular to the lines in S2. Each set is evaluated 
separately to obtain the gridlines by computing the distance 
between the lines. Lines with distance equal to estimated 
width of a tile, formed the gridlines. The intersection points 
of lines in S1 with the lines in S2 provided full quadrilaterals 
representing a tile. The intersection points of S1 and S2 with 
the image boundaries provided incomplete quadrilaterals, 
showing incomplete captured tiles. Incomplete tiles with an 
area less than half of the complete tile were ignored, as they 
do not capture enough relevant information. 

Landmark Detector to Generate Query Matrix: The second 
step involved mapping each tile to a landmark with high 
confidence. To ensure rotational and scale invariance, we 
used SURF [19] to obtain feature descriptors. To classify 
which landmark each tile resembles to, we trained a 
multiclass binary SVM classifier using the Error-Correcting 
Output Codes (ECOC) framework [20]. Recent research 
showed that ECOC framework successfully deals with the 
problem of modelling multiclass classification problems 
using a set of binary classifiers and to combine them. The 
SVM classifier used the static input images (Fig. 1) as 
training set, which consisted of 72 images for each of the 17 
landmarks, thus totaling to 1224 images. Each ceiling 
landmark was considered as a separate class. Each 
landmark corresponds to a unique integer, thus the grid of 
tiles was represented as a matrix of integers, referred here 
as query matrix (Fig. 2). Note: -1 got assigned to 
incomplete tiles. 

Location Identifier: The query matrix retrieved is then 
queried over a database of ceiling pattern matrices, which 
was provided at setup as part of the static input (Fig. 1, 2). 
Ceiling pattern matrix of each meeting room and cubicle is 
scanned to check if they contain the query matrix 
corresponding to the input image. If there is a sub-matrix 
match found, the system outputs the location information, 
in the form of meeting room/cubicle number. 

 
Figure 1. MobiCeil system with the format of static input 
resources, input image, and output room/cubicle number. 

Static 
Input

Input

Output Room/Cubicle number

Ceiling pattern matrix of 
each room and cubicle

Multiple images of each landmark

5 0 0 6 0 0 1 8 3

0 1 7 0 1 9 0 1 0

4 0 0 5 1 1 2 0 4

0 1 1 2 3 0 0 3 0

1 2 0 0 2 4 0 9 0

3 6 1 7 0 2 8 0 6
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In order to evaluate the performance of the proposed 
MobiCeil system with respect to accuracy and computation 
time, we collected data in an IT office building in India. 
Data was collected from 18 meeting rooms and 6 cubicles.  

To start with, two researchers manually collected the static 
input data (Fig. 1) – (a) 72 images of each of the 17 unique 
landmarks, and (b) ceiling pattern matrix of the 18 meeting 
rooms and 6 cubicles. The landmark images were captured 
by placing the phone on the table (of height 2.4ft) directly 
below the landmark tile and below each of the 8 tiles 
adjacent to the landmark tile. This was repeated with both 
the front and back camera of the phone, and with the 
room/cubicle lights in On and Off state to account for the 
glare in images. Note: Even in the light Off state, each 
room/cubicle has one or more emergency lights that cannot 
be turned off, to avoid the room/cubicle getting completely 
dark. This whole process was performed twice. That 
comprised of 72 images (9 tile positions x 2 cameras x 2 
light modes x 2 images) per landmark, totaling to 1224 
images (72 images/landmark x 17 landmarks). Each image 
was then cropped to extract the landmark tile image, and 
resized to 255 x 255 pixels. The process to identify ceiling 
layout and generate ceiling pattern matrix has been 
described in section The MobiCeil System Assumptions. 

To generate the test dataset, we collected 960 ceiling 
images. Out of the 18 meetings rooms, 10 were medium 
sized rooms with the maximum capacity of 5 people, while 
8 were small sized rooms with the maximum capacity of 3 
people. The ceiling test images were captured by the 
researcher, by placing the phone on the meeting room table 
in front of each chair, in three different rotation angles of 0, 
30 and 60 degrees. Again the images were taken with both 
the front and back camera, and with the meeting room 
lights in switched On and Off state. For cubicles, a similar 
approach was followed. Hence in total 960 test images ((10 
medium rooms x 5 chairs x 3 phone rotations x 2 cameras x 
2 light modes) + (8 small rooms x 3 chairs x 3 phone 
rotations x 2 cameras x 2 light modes) + (6 cubicles x 3 
rotations x 2 cameras x 2 light modes)) were collected from 
the meeting rooms and cubicle. All the images for both the 

test data and static input were captured using a Motorola 
Moto G2 phone with 8MP rear camera (aperture: f/2.0) and 
2MP front camera (f/2.2). 

�&�%���	
We evaluate the performance of MobiCeil in terms of 
accuracy and computational complexity. The static input of 
72 images of each of the 17 unique landmarks, and ceiling 
pattern matrix of the 18 meeting rooms and 6 cubicles, were 
provided to the system at setup. Ceiling pattern matrix data 
also served as the ground truth data. The input test data 
consisted of 960 ceiling images. 

The overall accuracy of the system in determining the 
location was 88.2%, which is reasonable for a low-cost, 
offline, low complexity, automated indoor localization 
system, with the use case of energy management and indoor 
navigation. Exploring further, we found statistically 
significant differences in the accuracy for the images 
captured using the front versus back camera, and also for 
the images in lights On versus Off mode. The best 
performance was achieved by images from the back camera 
with lights of the room/cubicle in the switched Off state 
(94.5%), while the worst performance was with front 
camera images in lights On state (81.6%). Images from the 
phone’s front camera achieved an accuracy of 84.7%, while 
images from the back camera were 91.6% accurate. This 
was expected as back camera has a higher resolution of 8 
MP while front camera has only 2 MP resolution. 
Interestingly, images taken with the room/cubicle lights Off 
were found to be 91.25% accurate, while images with lights 
On achieved an accuracy of 85.2%. Lights resulted in a lot 
of glare, which impacted the accuracy of the landmark 
detection algorithm. We did not find any significant 
difference in the test images with different rotations 
(p>0.05). This may be because of SURF, which is rotation 
invariant. Also, no significant difference was found 
between the images from meeting rooms and cubicles 
(p>0.05).  

On an average, the tile extractor module took 0.8s 
(std=0.2), the landmark detector to generate query matrix 
took 1.3s (std=0.3), and the location matching using ceiling 
pattern matrix took 0.7s (std=0.1). Thus overall it took 2.8s 
per image for indoor location computation (std=0.5). 

$���%����#	
The proposed system, MobiCeil, aims to infer location of 
the user inside the office building, using the ceiling images 
captured from the user phone’s camera. One of the major 
advantages of the system is that it captures and processes 
the input image offline with no user intervention. The 
underlying algorithm of the system employs scale-
invariance as well as rotation-invariance image processing 
techniques. Also, a few key observations, such as 
uniqueness of the arrangement of landmarks on the ceiling 
and existence of a fixed set of ceiling landmarks, lead to 
significant increase in the accuracy and reduction in the 
computational complexity. However, this also limits the 
scope of MobiCeil.  

Figure 2. Image processing based method to compute the 
location of an employee using the input ceiling image. 

Map landmarks 
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There are several limitations of the proposed approach. 
First, it will work only for buildings with tiled ceiling 
layout, with unique ceiling layout in different zones 
(including meeting rooms, cubicles, and recreational area) 
of a floor. We validated this uniqueness assumption by 
collecting data from a single floor of a building, however 
more data from different buildings needs to be collected to 
strengthen this assumption. MobiCeil can work on the other 
floors of the same building, as the whole building had a 
similar tiled ceiling layout. Second, the system requires the 
phone to be on the table, which may not be always true as it 
can be in user’s pocket, bag, or in his/her hand. This 
constraint can be identified as a feature, i.e., users can avoid 
being tracked by keeping the phone in the pocket/bag, or 
covering the camera lens.  Using collected data, we showed 
that most employees tend to place their phones on the table 
in an office environment. In future, the MobiCeil system 
can be enhanced by using other wireless technologies (such 
as Bluetooth or WiFi) to identify people in a group setting 
or devices in close proximity. In such cases, not all 
individuals need to be localized using the camera image 
data, thus reducing the dependency on phones lying on the 
table assumption. Third, the whole system was evaluated 
only on a single floor of a building. More deployments are 
needed to build a strong case to prove the generality of the 
proposed approach. Fourth, camera images can trigger 
privacy concerns among the employees. There are multiple 
ways to resolve it – the phone application must take explicit 
user permissions to access the camera in order to capture 
the ceiling images. Also, images must be automatically 
captured only when the user is inside the office (which can 
be known using the GPS data) and only when the phone is 
static on a flat horizontal surface (which can be known 
using the phone’s accelerometer and gyroscope sensor 
data). This will also help in reducing the phone’s battery 
consumption by MobiCeil, and completely removes any 
required user intervention. Fifth, our evaluation did not 
consider partially obstructed view of the ceiling (e.g., when 
the phone is placed close to another object or user). This 
needs to be evaluated in future. Last, the system was tested 
with a single smartphone. Different phones have varying 
camera lenses, which may add different kinds of distortions. 
Hence image rectification can help before applying the 
Hough transform. 

In spite of all these limitations, the system evaluated on 18 
meeting rooms and 6 cubicles in an IT office building, 
showed an accuracy of 88%. The accuracy and computation 
time can be further improved by modifying the algorithm 
for processing of the input image. For instance, the current 
system does not take into account the artifacts observed due 
to inappropriate lighting conditions. Advanced image 
processing techniques can help in detecting and removing 
such artifacts. We plan to pursue such enhancements as 
future extensions of this work. Moreover, to tackle the 
tedious bootstrapping issue, MobiCeil can crowdsource it, 
by prompting the user to enter their location when no match 
has been found (yet) for the observed ceiling pattern. 

Finally, this approach might also work for other patterned 
ceilings, e.g., wooden ceilings. Future work is needed in 
that direction. 

��#��%���#	
This work presented a low complexity phone-based indoor 
localization technique that performs offline computation to 
obtain location information of the user. The proposed 
MobiCeil system automatically takes an image using the 
front or rear camera of the phone when it is in a static 
horizontal position, and identifies the location based on 
comparison of the ceiling landmark information fed into the 
system as static input resources at the time of setup. An 
evaluation shows the system achieves a high accuracy of 
88.2% for identifying locations, with a low computation 
time of 2.8s/image. Such a system can help in reliable 
occupancy detection in an office environment, which has 
several applications, such as dynamic energy management 
and indoor navigation. 
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