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Abstract
With automatic speaker verification (ASV) systems becoming
increasingly popular, the development of robust countermea-
sures against spoofing is needed. Replay attacks pose a sig-
nificant threat to the reliability of ASV systems because of the
relative difficulty in detecting replayed speech and the ease with
which such attacks can be mounted. In this paper, we pro-
pose an end-to-end deep learning framework for audio replay
attack detection. Our proposed approach uses a novel visual
attention mechanism on time-frequency representations of ut-
terances based on group delay features, via deep residual learn-
ing (an adaptation of ResNet-18 architecture). Using a single
model system, we achieve a perfect Equal Error Rate (EER) of
0% on both the development as well as the evaluation set of the
ASVspoof 2017 dataset, against a previous best of 0.12% on the
development set and 2.76% on the evaluation set reported in the
literature. This highlights the efficacy of our feature representa-
tion and attention-based architecture in tackling the challenging
task of audio replay attack detection.
Index Terms: Replay attack, group delay grams, end-to-end
deep learning, visual attention, ASVspoof 2017 dataset

1. Introduction
Automatic speaker verification (ASV) technology has several
applications, including voice-based identification, pathologi-
cal voice assessment [1] and forensic evidence evaluation [2].
These applications require the ASV systems to be robust against
intentional circumvention using fake audio recordings, also
known as ‘spoofing attacks’. Spoofing attacks can be catego-
rized into four types: impersonation, replay, speech synthe-
sis, and voice conversion [3]. Due to the severity of these at-
tacks, the Automatic Speaker Verification Spoofing and Coun-
termeasures (ASVspoof) Challenge [4] was launched in 2015,
with the objective of enhancing the security of ASV systems
against spoofing attacks. The ASVspoof 2015 challenge fo-
cused on speech synthesis and voice conversion attacks, while
the ASVspoof 2017 challenge [5] focused on replay attacks.
The artifacts introduced by replay are very different from those
introduced by voice conversion and speech synthesis. The
ASVspoof 2017 challenge task is to determine whether a given
audio clip is a GENUINE human voice or a REPLAY recording.

Replay attacks fool the ASV system by simply replaying
a recording of a target speaker’s voice. Replay attacks are of
key concern as they are relatively easy to perform and pose a
significant threat to the reliability of an ASV system [6]. Also,
these attacks are very frequent as they do not need any expertise
or specialized hardware. For instance, all smartphones provide
high quality audio recording and playback, and hence can be
used for replay attack.

Detecting replay attacks using acoustic signal processing is
considered hard, due to the unpredictable variation in the quality

of a replay attack [5]. Artifacts introduced by naturally occur-
ring factors such as reverberation may be confusable in some
cases with those introduced by replay. Researchers also tried
machine learning for detecting replay attacks, and found it to
perform poorly, mainly due to the overfitting caused by the vari-
ability in speech signals [7]. Such models do not generalize
well to unseen acoustic environments that may be encountered
in practice. Audio recordings using high-quality microphones
in ideal acoustic environments can be indistinguishable from
genuine speech signals.

For the part of the ASVspoof 2017 competition that re-
quired distinguishing between genuine human voice and re-
play recording, a total of 49 submissions were received. Only
20 of those 49 submissions outperformed the baseline spoof
detection system, which was based on a Gaussian mixture
model (GMM) back-end classifier with constant Q cepstral co-
efficient (CQCC) features [5]. This shows the difficulty of
the challenge. Deep convolutional networks on spectrograms
performed the best, using an ensemble of three techniques
– LCNNFFT , SV Mi−vect, and CNNFFT + RNN – to
achieve an EER of 6.73% on the evaluation set and an EER
of 3.95% on the development set of the ASVspoof 2017 dataset
[8]. Patil et al. [9] used VESA-IFCC (Variable length Teager
Energy Operator-Energy Separation Algorithm-Instantaneous
Frequency Cosine Coefficients) and achieved an EER of 0.12%
on the development set and an EER of 14.06% on the evaluation
set. The organizers of the ASVspoof 2017 competition achieved
the best EER of 2.76% on the evaluation set, by creating a grand
ensemble of the 21 best performing systems [8].

To further emphasize, the difficulty of reliably detecting re-
play attacks can be mainly attributed to the fact that the arti-
facts introduced by the recording and playback get intertwined
with other inessential sources of variability, such as recording
and playback device-related artifacts, environmental noise, the
speaker’s voice identity, etc. Thus, it is important to propose
models that can robustly identify the pertinent artifacts intro-
duced by the recording and playback process, while at the same
time, ignore variability introduced by the ‘other’ factors, in or-
der to generalize well to unknown scenarios. This necessitates
the use of a feature representation with high spectral resolution
to capture details present in spectral regions that contain dis-
criminative information. Moreover, the model should also be
able to selectively attend to these regions, so that it does not
overfit on the other inessential variability factors.

In this paper, we propose group delay (GD) grams ob-
tained by concatenating a group delay function over consecu-
tive frames as a novel time-frequency representation of an ut-
terance, for the end-to-end training of deep convolutional neu-
ral networks for audio replay attack detection. The use of GD-
grams provides a time-frequency representation with high spec-
tral resolution, which is required for robust replay attack detec-
tion. Moreover, we propose a novel attention mechanism that
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Fig. 1: Overview of the proposed framework for audio replay
attack detection. (Note: GD: Group Delay, GAP: Global Aver-
age Pooling, FC: Fully Connected layer)

softly weights GD-grams, allowing the network to focus on the
regions of the spectrum that contain high discriminative infor-
mation for replay detection. Our framework is based on adapt-
ing the ResNet-18 architecture [9] and using its Global Aver-
age Pooling (GAP) layer to provide attention maps for a second
stage of discriminative training for improved performance. We
achieve a perfect Equal Error Rate (EER) of 0% on both the
development and evaluation sets of the ASVspoof 2017 dataset.

2. Methodology
Our proposed framework (Figure 1) employs: (1) transfer learn-
ing of a pretrained convolutional neural network (CNN) for fast
adaptation to the GD-grams extracted from utterances, (2) at-
tentional weighting of the raw GD-grams from the first stage
of training, and (3) another stage of transfer learning of a pre-
trained CNN on GD-grams weighted by soft attention for clas-
sification. For both the stages, we used Deep Residual Network
(ResNet) [9] as pretrained CNN and the weights were retrained
after initialization. In the following subsections, we describe
the three major components of our system – GD-gram, ResNet
and Visual Attention – followed by a functional overview of our
proposed framework.

2.1. Group Delay gram (GD-gram)

The short-time Fourier transform (STFT) of an input speech sig-
nal sequence x(n) can be expressed as:

X(ω, t) = |X(ω, t)|ejθ(ω,t), (1)

where |X(ω, t)| and θ(ω, t) are the magnitude spectrum and
phase spectrum at frequency ω and time t, respectively.

Group delay [10] is defined as the negative derivative of the
phase spectrum of STFT:

τ(ω, t) = −d(θ(ω, t))
dω

. (2)

As the implementation of Equation (2) requires the unwrap-
ping of the phase spectrum, the group delay function can be
alternatively calculated using only the amplitude values:

τ(ω, t) =
XR(ω, t)YR(ω, t) + YI(ω, t)XI(ω, t)

|X(ω, t)|2 , (3)

where R and I denote the real and imaginary parts. X(ω, t)
and Y (ω, t) denote the STFT of x(n) and nx(n), respectively.

We concatenate the group delay function (coefficients) of
all frames of an utterance to form the GD-gram. This 2D matrix
GD-gram is fed to the CNN as an input image (Figure 3).

Fig. 2: Residual block: Basic building block of ResNet.

The group delay function has been previously applied in
feature extraction tasks in speech processing [11, 10], where it
has been proposed as an alternative to the magnitude spectrum.
In our use case, a replayed speech signal passes through mul-
tiple channels with the channel artifacts typically being intro-
duced in frequency bands with low signal to noise ratio. Thus,
in order to robustly extract discriminative information from per-
tinent spectral regions, the time-frequency representation of the
speech signal should provide high spectral resolution. Group
delay functions have been shown to have higher spectral reso-
lution in comparison with the magnitude spectrum [12]. More-
over, GD-gram contains both power and phase spectrum infor-
mation [11, 13], thus making it a good feature representation
for end-to-end learning for spoof detection. The approach of
using phase spectrum information for replay attack detection is
novel. Previously, phase information has been used for detect-
ing speech synthesis and voice conversion attacks [14].

2.2. Deep Residual Network (ResNet)

Deep residual learning [9] enables the training of CNNs that
are substantially deeper than the architectures preceding it. It
alleviates the problem of vanishing gradients in deep CNNs by
introducing skip connections that enable gradient flow across a
large number of layers. The skip connections cause the outputs
to learn a residual mapping. The residual block forms the basic
building block of a ResNet (Figure 2). If the desired mapping to
be learned isH(x), the stacked residual layers learn the residual
mapping, F (x) = H(x)− x. Thus, the original mapping to be
learned becomes F (x) + x. ResNet uses the Rectified linear
unit (ReLU) activation function.

In our work, we use the ResNet-18 model [9], which con-
sists of layers in the following order: 7 × 7 convolution layer,
eight residual blocks, Global Average Pooling (GAP) layer, fol-
lowed by a fully connected layer with softmax.

Along with ResNet-18, we also use dropout [15] to reg-
ularize our model. Dropout combats the issue of overfitting
by preventing activations from becoming strongly correlated.
CNNs effectively utilise local spectro-temporal correlations in
time frequency representations of speech, such as GD-grams.
However, using dropout in convolutional layers results in the
scaling of the learning rate by the dropout probability, in case
there is a strong correlation between adjacent pixels. Hence,
we use spatial dropouts [16] in which entire feature maps are
dropped out to regularize the network.

2.3. Visual attention

Li et al. showed through the F-ratio metric that high frequency
bands have great discriminative capability for audio replay at-
tack detection [7]. They used inverted Mel warping to empha-
size the high frequency bands and demonstrated that it improves
performance of spoof detection on the ASVspoof 2017 develop-
ment set (EER improved from 12.37% to 7.50% ).

To capture the discriminative information contained within
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specific regions, we propose a visual attention mechanism based
on class activation mapping [17] for replay attack detection.

Class activation maps (CAM) using global average pooling
(GAP) utilizes the implicit attention present in CNNs. The GAP
layer was introduced to act as a structural regularizer and pre-
vent overfitting [18]. It has since been shown that remarkable
results in localizing the discriminative regions of an image can
be achieved using CAMs after being trained just on image level
labels [17]. For instance, CAM can detect an object without su-
pervision of the object’s location in an image. CAM leverages
the ability of GAP to retain the localization capability of the last
layers of a convolutional neural network.

The GAP layer in ResNet-18 outputs the spatial average of
all the activation maps after the last convolution layer. At the
end, a fully-connected layer is used to predict the class, using
the weights attached to each unit in the GAP layer. For classi-
fying c classes, Sc denotes the output of the softmax layer,

Sc =
∑

k

wck
∑

x,y

fk(x, y) =
∑

x,y

∑

k

wckfk(x, y), (4)

where fk(x, y) denotes the activation value of unit k in the last
convolutional layer at location (x, y). The weights of the fully-
connected layers are denoted as w. The CAM of a class Mc is
obtained by,

Mc(x, y) =
∑

k

wckfk(x, y). (5)

The CAM is computed as a weighted sum of the feature
maps of the last convolution layer. Mc(x, y) represents the rel-
evance of the activation of the grid (x, y) for classifying the im-
age as belonging to class c (Genuine or Replay). As replay de-
tection is a binary classification problem, we use a single class
activation map Mpred(x, y), which is the activation map corre-
sponding to the class predicted by the Stage-I network, to softly
weight the GD-gram. The class activation map Mpred(x, y)
is then upsampled to the size of the input GD-gram to generate
the attention maskA(x, y). Unlike images where the horizontal
and vertical axes have the same meaning, GD-grams are time-
frequency representations with x representing the time axis and
y representing the frequency axis. The soft attention weighted
(AW) output GDAW (x, y) is given by

GDAW (x, y) = GD(x, y) ∗A(x, y). (6)

As the attention mask A(x, y) highlights the spectral regions
that are relevant in differentiating between genuine and replayed
speech, AW GD-grams act as time-frequency representations of
speech in which the regions of the spectrum that are important
for spoof detection gets emphasized, for further discriminative
training. Such representations are essential for the model to
generalize to spoof attacks ‘in the wild’.

To summarize, the combination of the GD-gram time-
frequency representation and the attention-based convolutional
neural network architecture are significant departures from ex-
isting approaches in the literature, and contributes to the high
performance of our proposed framework.

2.4. System Flow

Figure 1 presents an overview of our proposed framework for
replay attack detection. GD-grams are generated from the au-
dio to be classified. In Stage-I, the raw GD-grams are fed to a
ResNet-18, which is pretrained on the Imagenet dataset [19]. In
Stage-II, the ResNet-18 of Stage-I is held fixed, its weights are

Subset #
Spk

#
Replay
sessions

# Re-
play

Config

# Utter-
ances

Genuine

# Utter-
ances

Replay
Training 10 6 3 1508 1508
Devel. 8 10 10 760 950
Eval. 24 161 110 1298 12008
Total 42 177 123 3566 14466

Table 1: Statistics of the ASVspoof 2017 corpus

not updated. GD-grams generated from the audio are fed to the
fixed ResNet-18 (of Stage-I) to generate soft attention masks
using the CAM technique. The GD-gram is softly weighted by
these attention masks to generate attention weighted (AW) GD-
grams. The AW GD-grams are then fed to the Stage-II Resnet-
18 (which is also pretrained on the Imagenet dataset) to classify
whether the audio is genuine or replay from the AW GD-gram.

3. Experiments
3.1. Dataset

In this work, we focus on the ASVspoof 2017 replay attack
dataset. The dataset consists of (a) training and development
sets of genuine/replay labeled audio examples, along with meta-
data about the speech content, devices and replay environment,
and (b) an evaluation set of both known and unknown condi-
tions (Table 1). The evaluation set is comprised of a combina-
tion of replay environments, playback devices and speakers that
are not part of the development data to evaluate model perfor-
mance in unforeseen conditions.

The ASVspoof 2017 dataset is based on the Reddots data
collection project, processed through various replay conditions.
The dataset consists of speech data collected from 177 replay
sessions in 123 unique replay configurations, with 42 differ-
ent speakers (Table 1). A replay configuration means a unique
combination of room, replay device and recording device, while
a session refers to a set of source files sharing the same re-
play configuration. The speech signals were collected in highly
varying acoustic-conditions. Different quality of playback and
recording devices were used. In order to simulate spoofing at-
tacks ‘in the wild’, the training set has only 3 replay config-
urations with speech from 10 speakers, whereas the evaluation
set has 110 highly heterogeneous acoustic replay configurations
with speech from 24 speakers.

3.2. Evaluation protocol

We follow the ASVspoof 2017 protocol and report the EER on
the development and evaluation set. EER computation requires
assigning a score to each audio file. A higher score indicates
that the audio file is genuine. EER depends on two metrics -
false acceptance rate (FAR) and false rejection rate (FRR). FAR
and FRR are calculated using classifier threshold θ, such that:

FAR(θ) =
|scorereplay > θ|
|scorereplay|

, FRR(θ) =
|scoregenuine ≤ θ|
|scoregenuine|

(7)
The EER corresponds to the threshold θEER at which the

two detection error rates are (approximately) equal. Addition-
ally, we report the half total error rate (HTER) on the evaluation
set, which is computed as:

HTEReval =
FAReval(θdev) + FRReval(θdev)

2
(8)

where θdev is the threshold obtained from the development set
at which FRR and FAR becomes equal.
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Technique Dev
EER

Dev
HTER

Eval
EER

Eval
HTER

LCNNFFT, SVMi-vect,
CNNFFT+RNN [21]

3.95% - 6.73% -

VESA-IFCC + CFCCIF [22] 0.12% - 18.33% -
Grand Ensemble [8] - - 2.76% -
ASVspoof 2017 baseline [5] - - 24.77% -
GD-ResNet-18 w/ Attention 0.0% 0.0% 0.0% 0.0%

Table 2: Results on the ASVspoof 2017 dataset

3.3. Model setup

Our model was trained only on the training set, and validated on
the development set, of the ASVspoof 2017 dataset. GD-grams
were extracted from the audio file using a Hamming window of
length 50 ms with a shift of 25 ms. A total of 2048 FFT points
were used. The GD-grams were either truncated or padded to
a length of 256 along the time axis in order to generate unified
time-frequency (T-F) representations. The GD-grams were fur-
ther resized to 512 × 256 before feeding into the CNN. The
Stage-I ResNet-18 training was performed to obtain the atten-
tion mask to be used in Stage-II. Spatial dropout with a prob-
ability of 0.5 was used before the fully connected layer (FC),
to prevent overfitting as the training data consists of only 3016
images (Table 1). Stage-I ResNet-18 training ran on an Nvidia
Tesla K40 GPU with ADAM optimizer [20] and a learning rate
of 0.00001, over 150 epochs and a batch size of 32. The learn-
ing rate was reduced by half after every 20 epochs. Once train-
ing was complete, this model was used to generate GD-grams
weighted with soft attention for Stage-II.

Stage-II training was also performed using a pretrained
ResNet-18. Spatial dropouts with a probability of 0.5 before
the first and third residual block, and dropout with a probability
of 0.5 before the fully connected layer, were used. The GD-
grams were passed to the Stage-I model and the attention masks
generated were used to softly weight those GD-grams. During
Stage-II training, the Stage-I model was held fixed. Stage-II
training was similarly done with a learning rate of 0.0001 with
the ADAM optimizer over 150 epochs with a batch size of 32,
on an Nvidia Tesla K40 GPU. The learning rate was reduced by
half after every 7 epochs.

4. Results
The results of our proposed approach, ‘GD-ResNet-18 with at-
tention’ model on the development and evaluation set of the
ASVspoof 2017 dataset is summarized in Table 2, along with
the best results reported in the literature. The organizers of the
ASVspoof 2017 challenge created a grand ensemble of the 21
best performing systems submitted to the challenge to obtain an
EER of 2.76% on the evaluation set. However, using ResNet-18
with attention on GD-grams yields an EER of 0% and HTER of
0% on the evaluation set. Previously, Pal et al. [23] achieved a

nearly 0 overall average EER (0.05%) on the ASVspoof 2015
dataset comprising of voice conversion and speech synthesis at-
tacks.

An experiment without using the attention mechanism and
just the stage-I network resulted in an EER of 12.77%. GD-
grams provide a time-frequency representation with high spec-
tral resolution. In the absence of the second stage of discrimi-
native training, there is an increased tendency to overfit on the
spectral artifacts caused by inessential audio factors. Thus the
attention mechanism is crucial for leveraging the discrimina-
tive information present in GD-grams. Experimentation with
the magnitude spectrogram as input representation (instead of
GD-grams) resulted in an EER of 13.14% on the evaluation set
for stage-I. However, its performance degraded to 16.29% with
the addition of an attention mechanism. This further highlights
the importance of learning the attention masks from the group
delay domain, which offers higher resolution, for the second
stage of discriminative training.

The maximum Area Under the curve of the Receiver Oper-
ating Characteristic (AUROC=1) is obtained on the evaluation
set of the corpus showing that the model is perfect in its dif-
ferentiation between replay and genuine utterances. The evalu-
ation set was designed to assess the limits of replay attack de-
tection and provides spoofing attacks ‘in the wild’ with replay
attacks from 110 replay configurations whereas the training set
was composed of only 3 replay configurations.

The remarkable improvement of our model over the previ-
ous state-of-the-art can be primarily attributed to two factors:
(1) the higher spectral resolution offered by GD-grams along
with inclusion of phase information, and (2) the ability of the
visual attention mechanism to attend to spectral regions contain-
ing discriminative information that allows the model to general-
ize well to unseen replay configurations. Specifically, the GAP
layer of the stage-I ResNet is used to identify regions of inter-
est in the raw GD-gram representation of the speech signal and
to weight the GD-gram to generate an Attention Weighted GD-
gram before passing it to the stage-II ResNet for classification.

In Figure 3, it is visible that the Attention Weighted vari-
ants are more discriminative than the raw GD-grams. The raw
GD-gram after being softly weighted by the attention mask re-
sults in a representation where certain regions in the spectrum
are emphasized relative to other regions. Using this interme-
diate representation for another stage of discriminative training
allows our framework to tune itself to place emphasis on the dis-
criminative information present in raw GD-grams. This further
validates the hypothesis that it is important to emphasize the dis-
criminative frequencies, and deemphasize frequencies that are
more impacted by inessential factors of variability in speech, in
order to achieve good results for replay attack detection.

5. Conclusion

In this paper, we propose an end-to-end deep learning frame-
work for audio replay attack detection based on raw GD-grams.
We highlight the importance of utilizing discriminative infor-
mation contained within specific regions of the spectrum by
proposing a visual attention mechanism to allow our model to
focus on the regions pertinent to replay attack detection, along
with a time-frequency representation of speech with high spec-
tral resolution, to tackle the challenges associated with audio
replay attack detection. We achieved an EER of 0% on both the
development and evaluation sets of the ASVspoof 2017 dataset.
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