
RESPIRENET: A DEEP NEURAL NETWORK FOR ACCURATELY DETECTING
ABNORMAL LUNG SOUNDS IN LIMITED DATA SETTING

Siddhartha Gairola1, Francis Tom2, Nipun Kwatra1 and Mohit Jain1

Microsoft Research India1, Microsoft2

ABSTRACT

Auscultation of respiratory sounds is the primary tool for
screening and diagnosing lung diseases. Automated anal-
ysis, coupled with digital stethoscopes, can play a crucial
role in enabling tele-screening of fatal lung diseases. Deep
neural networks (DNNs) have shown a lot of promise for
such problems, and are an obvious choice. However, DNNs
are extremely data hungry, and the largest respiratory dataset
ICBHI [21] has only 6898 breathing cycles, which is still
small for training a satisfactory DNN model. In this work,
RespireNet, we propose a simple CNN-based model, along
with a suite of novel techniques—device specific fine-tuning,
concatenation-based augmentation, blank region clipping,
and smart padding—enabling us to efficiently use the small-
sized dataset. We perform extensive evaluation on the ICBHI
dataset, and improve upon the state-of-the-art results for
4-class classification by 2.2%.

Index Terms— Abnormality detection, lung sounds,
crackle and wheeze, ICBHI dataset, deep learning

1. INTRODUCTION

Respiratory diseases like asthma, chronic obstructive pul-
monary disease (COPD), lower respiratory tract infection,
lung cancer, and tuberculosis are the leading causes of death
worldwide [14], constituting four of the 12 most common
causes of death. Early diagnosis has been found to be cru-
cial in limiting the spread of respiratory diseases, and their
adverse effects on the length and quality of life. Listening
to chest sounds using a stethoscope is a standard method
for screening and diagnosing lung diseases. It provides a
low cost and non-invasive screening methodology, avoiding
the exposure risks of radiography and patient-compliance
requirements associated with tests such as Spirometry.

There are a few drawbacks of stethoscope-based diagno-
sis: requirement of a trained medical professional to inter-
pret auscultation signals, and subjectivity in interpretations
causing inter-listener variability. These limitations are exac-
erbated in impoverished settings and during pandemic situa-
tions (such as COVID-19), due to shortage of expert medi-
cal professionals. Automated analysis of respiratory sounds
can alleviate these drawbacks, and also help in enabling tele-
medicine applications to monitor patients outside a clinic by
less-skilled workforce such as community health workers.

Fig. 1. Overview of proposed RespireNet framework. We pre-
process the audio signal (bandpass filtering, downsampling,
normalization, etc.), apply concatenation-based augmenta-
tion and smart padding, and generate the mel-spectrogram.
Blank region clipping is applied to remove blank regions in
the high frequency ranges. The processed spectrogram is then
used to train our DNN model via a two-stage training. Stage-
1: the model is trained using entire train set. Stage-2: device
specific fine-tuning which trains using subset of data corre-
sponding to each device.

Algorithmic detection of lung diseases from respiratory
sounds has been an active area of research [17, 20] especially
with the advent of digital stethoscopes. Most of these works
focus on detecting abnormal respiratory sounds of wheeze and
crackle. Wheeze is a typical symptom of asthma and COPD.
It is characterized by a high-pitched continuous sound in the
frequency range of 100-2500Hz and duration above 80 msec
[3, 19]. Crackles, which are associated with COPD, chronic
bronchitis, pneumonia and lung fibrosis [7, 18], have a dis-
continuous, non-tonal sound, around frequency of ∼650 Hz
and duration of 5 msec (for fine crackles), or frequency of
100-500 Hz and duration of 15 msec (for coarse crackles).

Although early works focused on hand-crafted features
and traditional machine learning [4, 8], more recently, deep
learning based methods have received the most attention [1,
9, 12]. For training DNNs, a time-frequency representation of
the audio signal such as Mel-spectrograms [1, 10, 25], stacked
MFCC features [2, 9, 13, 16, 25] or optimized S-transform
spectrogram [6] is used. This 2D “image” is then fed into
CNNs [2, 16], RNNs [9, 15], or hybrid CNN-RNNs [1] to
learn robust high dimensional representations.
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It is well known that DNNs are data hungry and typically
require large datasets to achieve good performance. In this
work, we use the ICBHI challenge dataset [21], a popular res-
piratory sound dataset. In spite of being the largest publicly
available dataset, it has only 6898 breathing cycle samples,
which is quite small for training deep networks. Thus, a big
focus of our work has been on developing a suite of tech-
niques to help train DNNs in a data efficient manner. We
found that a simple CNN architecture, such as ResNet, is
adequate for achieving good accuracy. This is in contrast
to prior work employing complex architectures like hybrid
CNN-RNN [1], non-local block additions to CNNs [12], etc.

In order to efficiently use the available data, we did ex-
tensive analysis of the ICBHI dataset. We found several char-
acteristics of the data that might inhibit training DNNs ef-
fectively. For example, the dataset contains audio recordings
from four different devices, with skewed distribution of sam-
ples across the devices, which makes it difficult for DNNs to
generalize well across devices. Similarly, the dataset has a
skewed distribution across normal and abnormal classes, and
varying lengths of audio samples. We propose multiple novel
techniques to address these problems—device specific fine-
tuning, concatenation-based augmentation, blank region clip-
ping, and smart padding. We perform extensive evaluation
and ablation analysis of these techniques.
The main contributions of our work are:

1. demonstration that a simple network architecture is suf-
ficient for respiratory sound classification, and more fo-
cus is needed on making efficient use of available data.

2. a detailed analysis of the ICBHI dataset pointing out its
characteristics impacting DNN training significantly.

3. a suite of techniques—device specific fine-tuning,
concatenation-based augmentation, blank region clip-
ping and smart padding—enabling efficient dataset us-
age. These techniques are orthogonal to the choice of
network architecture and should be easy to incorporate
in other networks.

2. METHOD

Dataset: We perform all evaluations on the ICBHI scientific
challenge respiratory sound dataset [21, 22]. It is one of the
largest publicly available respiratory datasets. The dataset
comprises of 920 recordings from 126 patients with a com-
bined total duration of 5.5 hours. Each breathing cycle in a
recording is annotated by an expert as one of the four classes:
normal, crackle, wheeze, or both (crackle and wheeze). The
dataset comprises of recordings from four different devices1

from hospitals in Portugal and Greece. For every patient, data
was recorded at seven different body locations.

Pre-processing: The sampling rate of recordings in the
dataset varies from 4 kHz to 44.1 kHz. To standardize, we
down-sample the recordings to 4 kHz and apply a 5-th order

1The four devices used for recordings are AKGC417L Microphone, 3M
Littmann Classic II SE Stethoscope, 3M Litmmann 3200 Electronic Stetho-
scope, and WelchAllyn Meditron Master Elite Electronic Stethoscope

Butterworth band-pass filter to remove noise (heartbeat, back-
ground speech, etc.). We also apply standard normalization
on the input signal to map the values within the range (-1, 1).
The audio signal is then converted into a Mel-spectrogram,
which is fed into our DNN.
Network architecture: We use a CNN-based network, ResNet-
34, followed by two 128-d fully connected linear layers with
ReLU activations. The last layer applies softmax activation to
model classwise probabilities. Dropout is added to the fully-
connected layers to prevent overfitting. The network is trained
via a standard categorical cross-entropy loss to minimize the
loss for multi-class classification. The overall framework and
architecture is illustrated in Figure 1.

2.1. Efficient Dataset Utilization
Even though ICBHI is the largest publicly available dataset
with 6898 samples, it is still relatively small for training
DNNs effectively. Thus, a major focus of our work has been
to develop techniques to efficiently use the available samples.
We extensively analyzed the dataset to identify dataset char-
acteristics that inhibit training DNNs effectively, and propose
solutions to overcome the same.

The first commonly used technique we apply is transfer
learning, where we initialize our network with weights of a
pre-trained ResNet-34 network on ImageNet [23]. This is fol-
lowed by our training where we train the entire network end-
to-end. Interestingly, even though ImageNet dataset is very
different from the spectrograms which our network sees, we
still found this initialization to help significantly. Most likely,
low level features such as edge-detection are still similar and
thus “transfer” well.
Concatenation-based Augmentation: Like most medical
datasets, ICBHI dataset has a huge class imbalance, with
the normal class accounting for 53% of the samples. To
prevent the model from overfitting on abnormal classes, we
experimented with several data augmentation techniques.
We first apply standard audio augmentation techniques, such
as noise addition, speed variation, random shifting, pitch
shift, etc., and also use a weighted random sampler to sample
mini-batches uniformly from each class. These standard tech-
niques help a little, but to further improve generalization of
the underrepresented classes (wheeze, crackle, both), we de-
veloped a concatenation based augmentation technique where
we generate a new sample of a class by randomly sampling
two samples of the same class and concatenating them (see
Figure 2). This scheme led to a non-trivial improvement in
the classification accuracy of abnormal classes.

Fig. 2. Proposed concatenation-based augmentation.

Smart Padding: The breathing cycle length varies across pa-
tients as well as within a patient depending on various factors
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(e.g., breathing rate can increase moderately during fever).
In the ICBHI dataset, the length of breathing cycles ranges
from 0.2s to 16.2s with a mean cycle length of 2.7s. This
poses a problem while training our network as it expects a
fixed size input2. The standard way to handle this is to pad
the audio signal to a fixed size via zero-padding or reflection
based padding. We propose a novel smart padding scheme,
which uses a variant of the augmentation scheme described
above. For each data sample, smart padding first looks at the
breathing cycle sample for the same patient taken just before
and after the current one. If this neighbouring cycle is of the
same class or of the normal class, we concatenate the cur-
rent sample with it. If not, we pad by copying the same cycle
again. We continue this process until we reach our desired
size. This smart padding scheme also augments the data and
helps prevent overfitting. We experimented with different in-
put lengths, and found a 7s window to perform best. A small
window led to clipping of samples, thus loosing valuable in-
formation in an already scarce dataset, while a very large win-
dow caused repetition leading to degraded performance.

Fig. 3. Blank region clipping: The network attention [5]
starts focusing more on the bottom half of the spectrogram,
instead of blank spaces after clipping.

Blank Region Clipping: On analyzing samples using Grad-
Cam++ [5] which our base model mis-classified, we found
notable black regions3 at higher frequency regions of their
spectrograms (Figure 3). On further analysis, we found that
many samples, and in particular 100% of the Litt3200 de-
vice samples, had blank region in the 1500-2000Hz frequency
range. Since this was adversely affecting our network perfor-
mance, we selectively clip off the blank rows from the high
frequency regions of such spectrograms. This ensures that the
network focuses on the region of interest leading to improved
performance. Figure 3 shows this in action.
Device Specific Fine-tuning: The ICBHI dataset has sam-
ples from 4 different devices. We found that the distribu-
tion of samples across devices is heavily skewed, e.g. the
AKGC417L Microphone alone contributes to 63% of the
samples. Since each device has different audio characteris-
tics, the DNN may fail to generalize across devices, especially

2CNNs can be made size agnostic by using adaptive average pooling, but
that typically hurts accuracy.

3Black region in a spectrogram means that the audio signal has zero en-
ergy in the corresponding audio frequency range.

for the underrepresented devices in the already small dataset.
To verify this, we divided the test set into 4 subsets depending
on their device type, and compute the accuracy of abnormal
class samples in each subset. As expected, we found the clas-
sification accuracy to be strongly correlated with the training
set size of the corresponding device. To address this, we first
train a common model with the full training data (stage-1,
Figure 1). We then make 4 copies of this model and fine-tune
(stage-2) them for each device separately by using only the
subset of training data for that device. We found this approach
to significantly improve the performance, especially for the
underrepresented devices.

3. EXPERIMENTS

We evaluate the performance of our framework on the res-
piratory anomaly classification task proposed in the ICBHI
challenge [21]. This is further divided into two subtasks:
(i) classify a breathing cycle into one of the four classes–
normal(N), crackle(C), wheeze(W), both(B), and (ii) clas-
sify a breathing cycle into normal or anomalous class,
where anomalous = {crackle, wheeze, both}. Our eval-
uation method is same as the one proposed in the orig-
inal ICBHI challenge. The final score is computed as
the mean of Sensitivity Se = Pc+Pw+Pb

Nc+Nw+Nb
and Specificity

Sp = Pn

Nn
, where Pi and Ni are the number of correctly

classified and total number of samples in class i, respectively
(i ∈ {normal, crackle, wheeze, both}). For the 2-class
case, we adopt the anomalous and normal class scores as Se

and Sp respectively, and the score is computed as their mean.
We compare our performance using the above evaluation

metric on two dataset divisions: the official 60-40% split [21]
and the 80-20% split [1, 11, 12] for train-test4. The Sensitivity
Se, Specificity Sp and ICBHI Score values are reported in
Table 1. RespireNet achieves state-of-the-art (SOTA) in both
train-test split divisions, and outperforms SOTA [12] on the
official split (60-40) by 4% and SOTA [1] on the 80-20 split
by 2.2%. Further, RespireNet achieves a score of 77% on the
2-class classification task, achieving the new SOTA.
Implementation Details: We train our models on a Tesla v100
GPU on a Microsoft Azure VM. We used the SGD optimizer
with momentum of 0.9, and a batch size of 64. We used a
fixed learning rate of 1e-3 for stage-1 and 1e-4 for stage-2 of
training. Stage-1 was trained for 200 epochs. The highest
validation checkpoint from stage-1 was used to train stage-2
for another 50 epochs for each device.

We further analyze the effect of our novel proposed tech-
niques by conducting an ablation analysis on the 4-class clas-
sification task on the 80/20 split.
Concatenation-based Augmentation: Due to the small size of
abnormal samples in the dataset, our model tends to overfit on
the abnormal classes quickly, and achieved a score of 62.2%.
Standard augmentations (noise addition, etc.) improved the
score to 66.2%, which further improved to 66.8% with our
concatenation-based augmentation. Also, most of the gain

4For both the splits, the train and test set are patient-wise disjoint.

3



Split & Task Method Sp Se Score

60/40 Split Jakovljevic et al. [8] - - 39.5%
& Chambres et al. [4] 78.1% 20.8% 49.4%

4-class Serbes et al. [24] - - 49.9%
Ma et al. [11] 69.2% 31.1% 50.2%
Ma et al. [12] 63.2% 41.3% 52.3%
CNN (ours) 71.4% 39.0% 55.2%

CNN+CBA+BRC (ours) 71.8% 39.6% 55.7%
CNN+CBA+BRC+FT (ours) 72.3% 40.1% 56.2%

80/20 Split Kochetov et al. [9] 73.0% 58.4% 65.7 %
& Acharya et al. [1] 84.1% 48.6% 66.3%

4-class Ma et al. [12] 64.7% 63.7% 64.2%
CNN (ours) 78.8% 53.6% 66.2%

CNN+CBA+BRC (ours) 79.7% 54.4% 67.1%
CNN+CBA+BRC+FT (ours) 83.3% 53.7% 68.5%

80/20 Split CNN (ours) 83.3% 60.5% 71.9%
& CNN+CBA+BRC (ours) 76.4% 71.0% 73.7%

2-class CNN+CBA+BRC+FT (ours) 80.9% 73.1% 77.0%

Table 1. Performance comparison of the proposed model
with the state-of-the-art systems following random splits. We
see significant improvements from our proposed techniques:
concatenation-based augmentation (CBA), blank region clip-
ping (BRC) and device specific fine-tuning (FT).

Length. 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec 9 sec

Scores 56.6 59.0 60.3 61.1 62.3 64.4 66.2 65.1 65.5

Table 2. Input length size vs classification score.

came from improved accuracy of the abnormal classes, where
the sensitivity increased by 1.5%. This demonstrates that our
augmentation scheme to generate novel samples for the ab-
normal class helps the model generalize better.

Smart Padding: The length of breathing cycle in the dataset
has a wide variation, thus we need to pad the shorter sam-
ples and clip the longer ones to match the input length of
the network. We experimented with different input lengths
and found that a 7s length performed optimally (see Table 2).
Since the average cycle length is 2.7s, padding became cru-
cial as a majority of the inputs need padding. We found the
padding scheme to have a significant impact on accuracy. For
the base model, smart padding improves accuracy over zero-
padding and reflection-based padding by 5% and 2% respec-
tively. This demonstrates the effectiveness of our padding
scheme, which incorporates data augmentation for padding,
rather than plain copying or adding zeros.

Blank Region Clipping: This provided an improvement of
0.5% over the base model score of 66.2%. When combined
with our proposed augmentation, it helped achieve a score of
67.1%, outperforming the current SOTA [1] by 0.8%.

Device specific fine-tuning: We found that the large skew in
sample distribution across devices caused the model to not
generalize well for under-represented devices. Our device
specific fine-tuning scheme helped significantly, resulting in
an improvement of 1.4% in the final ICBHI score. We also
observed that this fine-tuning disproportionally helped the
under-represented classes. Table 3 shows that devices with
fewer samples had ∼9% increase in their scores.

Device % Samples Score Improvement

AKGC417L 63% 1.7%
Meditron 21% 1.6%
Litt3200 9% 9.3%
LittC2SE 7% 8.6%

Table 3. Device specific fine-tuning: The devices with small
number of samples show a big improvelment in their scores.

4. RELATED WORK
Recently, there has been a lot of interest in using deep learn-
ing models for respiratory sounds classification [1, 9, 12]. It
has outperformed statistical methods (HMM-GMM) [8] and
traditional machine learning methods (boosted decision trees,
SVM) [4, 24]. In these deep learning based approaches, a
time-frequency representation of the audio signal is provided
as input to the model. Kochetov et al. [9] propose a deep re-
current network with a noise masking intermediate step for
the four class classification task, obtaining a score of 65.7%
on the 80-20 split. However the paper omits the details re-
garding noise label generation [1], thus making it hard to re-
produce. Deep residual networks and optimized S-transform
based features are used by Chen et al. [6] for three-class clas-
sification of anomalies in lung sounds. The model is trained
and tested on a smaller subset of the ICBHI dataset on a 70-30
split and achieve a score of 98%.

Acharya and Basu [1] propose a Mel-spectrogram based
hybrid CNN-RNN model with patient-specific model tuning,
achieving a score of 66.3% on 4-class and 80-20 split. Ma
et al. [12] introduce LungRN+NL which incorporates a non-
local block in the ResNet architecture and apply mixup aug-
mentations to address the data imbalance problem and im-
prove the model’s robustness, achieving sensitivity of 63.7%.
However, none of these approaches focus on characteristics of
the ICBHI dataset, which we exploit to improve performance.

5. CONCLUSION AND FUTURE WORK
The paper proposes RespireNet a simple CNN-based model,
along with a set of novel techniques—device specific fine-
tuning, concatenation-based augmentation, blank region clip-
ping, and smart padding—enabling us to effectively utilize a
small-sized dataset for accurate abnormality detection in lung
sounds. Our proposed method achieved a new SOTA for the
ICBHI dataset, on both the 2-class and 4-class classification
tasks. Further, our proposed techniques are orthogonal to the
choice of network architecture and should be easy to incorpo-
rate within other frameworks.

The current performance limit of the 4-class classification
task can be mainly attributed to the small size of the ICBHI
dataset, and the variation among the recording devices. Fur-
thermore, there is lack of standardization in the 80-20 split
and we found variance in the results based on the particular
split. In future, we would recommend that the community
should focus on capturing a larger dataset, while taking care
of the issues raised in this paper.

4



References
[1] Jyotibdha Acharya and Arindam Basu. Deep neural network

for respiratory sound classification in wearable devices en-
abled by patient specific model tuning. IEEE Transactions on
Biomedical Circuits and Systems, PP:1–1, 03 2020.
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6. SUPPLEMENTARY MATERIAL

This supplementary material includes some other details
about the dataset, and additional results which could not be
accommodated in the main paper.

6.1. Dataset Details

The 2017 ICBHI dataset [21] comprises of 920 recordings
from 126 patients with a combined total duration of 5.5 hours.
Each breathing cycle in a recording is annotated by a single
expert as one of the four classes: normal, crackle, wheeze or
both (crackle and wheeze). These cycles have various record-
ing lengths (see Figure 4) ranging from 0.2s to 16.2s (mean
cycle length is 2.7s) and the number of cycles is imbalanced
across the four classes (i.e. 3642, 1864, 886, 506 cycles for
normal, crackle, wheeze and both classes respectively).

Fig. 4. Distribution of length of cycles across samples. 65%
of the samples have a cycle length of < 3 seconds, and 33%
of the samples have a cyle length between 4-6 seconds.

The dataset consists of sound recordings from four de-
vices AKGC417L Microphone, 3M Littmann Classic II SE
Stethoscope, 3M Litmmann 3200 Electronic Stethoscope and
WelchAllyn Meditron Master Elite Electronic Stethoscope and
is not balanced across patients as well as number of breathing
cycles (see Tables 4, 5). This creates a skew in the data distri-
bution and has an adverse impact on the performance of the
model as discussed in the analysis earlier.

Device Patient
Count* N C W B Total

AKGC417L 32 1922 1543 500 381 4346
Meditron 64 1037 215 148 56 1456
Litt3200 11 347 77 126 44 594
LittC2SE 23 336 29 112 25 502

Table 4. Number of breathing cycles across classes and de-
vices, along with the distribution of patients across devices.
*Number of patients total to 130 instead of 126 as some of the
devices have an overalap with the patients.

Device N C W B

AKGC417L 0.53 0.83 0.56 0.75
Meditron 0.28 0.11 0.17 0.11
Litt3200 0.10 0.02 0.14 0.09
LittC2SE 0.09 0.04 0.13 0.05

Table 5. Distribution of breathing cycles across classes and
devices.

For creating the splits we perform sample 80-20 w.r.t
number of patients. From the numbers in Table 4, we have 64
patients from Meditron device but only 1468 breathing cycles
(22.9 breathing cycles per patient on an average), whereas
for AKGC417L device we have 32 patients and 4364 breath-
ing cycles (136.4 breathing cycles per patient on an average).
This depicts the huge skew in the splits across devices and pa-
tients. Further there is also a skew between abnormal classes
across devices: The majority of crackle class (83% of the
total samples) is found within the AKGC417L device whereas
wheeze and both have different proportions across devices.

6.2. Additional Results

Single Device Training We train our model only on samples
from the AKGC417L device. Table 6 depicts the test perfor-
mance on the 4 different devices. This demonstrates that the
training only on a single device, does not translate well across
the other devices, thus further motivating the use of device
specific fine-tuning.

Device Normal Crackle Wheeze Both

AKGC417L 61.3% 77.5% 23.8% 28.2%
Meditron 47.3% 69.2% 26.3% 0.0%
Litt3200 51.2% 66.7% 20.7% 66.7%
LittC2SE 16.8% 22.2% 0.0% 0.0%

Table 6. Scores device wise for each class when trained only
on AKGC417L. Overall Score: 53.0%, Sensitivity: 55.7%
and Specificity: 50.3%.

Attention Map Visualization Figure 5 depicts global av-
erage of attention maps computed (for layer-4 of ResNet34)
using Grad-Cam++[5] for 1370 samples in the test split be-
fore and after employing the blank region clipping scheme
during network training. It can be observed that the network
starts focusing more on the bottom half of the spectrogram,
instead of blank spaces after using blank region clipping. This
demonstrates the efficacy of using the proposed blank region
clipping scheme which also results in improved performance.

Confusion Matrix Figure 6 shows the confusion matrix
before and after device specific fine-tuning.
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Fig. 5. Global average of attention maps computed using Grad-Cam++[5] for samples in the test split before and after
employing the blank region clipping scheme during network training.

Fig. 6. Confusion matrices before and after device-wise fine-tuning.
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