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https://healthtimes.com.au/hub/medical-technology/65/news/ncl/the-difference-between-stethoscopes-for-nurses-doctors/3518/

Motivation

Lung Auscultation: Listening to sounds from the lung with a
stethoscope to diagnose and treat respiratory diseases.

Pros
e Low-cost, non-invasive process and simple to get signal

e Provides valuable information for screening and diagnosing
lung diseases

Cons

 Requires medical professionals to analyze the respiratory
signal

e Subjectivity in interpretations causing inter-listener variability.
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Solution

Automated analysis, combined with digital stethoscopes can
help overcome the drawbacks.
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Abnormal Lung Sounds

Abnormal respiratory sounds like crackle and wheeze are useful in identifying specific
respiratory diseases.

Wheeze:
e High-pitched continuous sound with frequency 100-2500Hz and Time > 80msec
e Typical symptom of asthma and COPD (chronic obstructive pulmonary disease)

Crackle:
e Discontinuous, non-tonal sound

 With frequency ~650Hz and duration ~bmsec (for fine crackles, or frequency of 100-
500Hz and duration ~15msec (for coarse crackle)

e Associated with COPD, chronic bronchitis, pneumonia and lung fibrosis
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Our Focus

Automated method for detecting abnormal respiratory sounds
crackle and wheeze.

Contributions:

o RespireNet a simple CNN-based model for automatic classification
of respiratory sounds.

e Detailed analysis of the ICBHI dataset
e Efficient use of limited data by a suite of novel techniques
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ICBHI Dataset

ICBHI Challenge dataset is the largest publicly available respiratory
sound dataset.

Dataset Stats:
e 920 recordings containing 6898 respiratory cycles

» Total duration of recordings 5.5 hours
e Collected from 126 patients

—m

Cycles 3642 1864 6898
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Proposed Method: Overview
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Pre-Processing: Data Standardization

Recordings have varying sampling rates (4kHZ - 44.1kHZ)
e Down-sample recordings to 4kHz

Noise Removal

e Apply bt order Butterworth band-pass filter to remove noise (heartbeat,
background speech, etc)

Normalization
e Normalization to map values between (-1.0, +1.0)
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Data Augmentation

ICBHI dataset has small size and huge class imbalance
e (~53% Normal, ~27% Crackle, ~13% Wheeze, 7% Both)

Standard Augmentations
* Noise addition

e Speed variation

e Random Shift

e Pitch Shift
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Concatenation Based Augmentation
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Smart Padding

Distribution of length of cycles

* Breathing cycle length varies within patients as o

well as across patients

« ICBHI dataset has varying length of breathing £
cycles ranging from 0.2s to 16.2s (mean cycle d
length = 2.75s)

e Cycle length must be standardized as CNN model ® 3 4 € B ® 1 14 10
requires fixed size input Duraticn {seconds)
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Smart Padding

e Standardize cycle length to 7s
e For sample with cycle length < 7s, apply smart padding.

e Experiments demonstrate that a length of 7 second works best for the
given dataset
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Smart Padding

Neighboring Cycles Current Cycle Smart Padding Output
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PR ¢
Blank Region Clipping

GradCAM++ Visualization

Many breathing cycles have no information in

the higher frequency range
e Eg: 100% of the Litt3200 device samples
had no information in the 1500 - 2000

Hz band

Blank regions in the spectrograms create
false edges and hurt network performance
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Blank Region Clipping

Selectively clip off blank regions
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(a) Spectrogram before clipping
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(c) GradCam++ Attention before clipping (d) GradCam++ Attention after clipping
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Network Training: Stage 1

ResNet34 backbone dropout=0.5

A

ResNet34 Backbone with pre-trained ImageNet weights

e Categorical Cross-entropy loss

e Optimizer: SGD with momentum (=0.9)
e Batch-Size: 64

e Fixed LR: 1e-3
e Epochs: 200

Class Probs
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<
Network Training: Stage 2

|ICBHI Dataset has samples from 4 different

recording devices. Patient

Device . . N C W B Total
Count®
Distribution of samples across devices is heavily AKGC417L 32 1922 1543 500 381 4346
skewed Meditron 64 1037 215 148 56 1456
Litt3200 11 347 77 126 44 594
_ : : o
 Eg: AKGC417L Microphone contributes to 63% LittC2SE 3 16 20 112 25 s
of samples

. . . . Breathing cycles across classes and devices
DNN fails to generalize across devices given the gy

small size of the dataset
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Network Training: Stage 2

Device specific fine-tuning

Fine-tune the model from Stage 1 for each device
separately .

e LR:1e4
e Epochs: 50

Device 1 Device 2 Device 3 Device 4

Stage 2: Device specific fine-tuning

RespireNet Framework
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Evaluation on ICBHI Dataset

4 Class Classification
e C(Classify into 4 classes: Normal, Crackle, Wheeze, Both
P.+ Pw + Pb

P
o _ ;S iCicity — n
Senstivity N_+ Nw + Nb pecificity _Nn

 P,and N, are the number of correctly classified and total number of samples in class i, respect. (where i
in {normal, crackle, wheeze, both}))

2 Class Classification
e C(Classify into 2 classes: Normal, Abnormal (Crackle/Wheeze/Both)
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Results

Split & Task Method Sp Se Score
60/40 Split Jakovljevic et al. [8] - - 39.5%
& Chambres et al. [4] 78.1% 20.8%  49.4%
4-class Serbes et al. [24] - - 49.9%
Maetal. [11] 69.2% 31.1% 50.2%

Maet al. [12] 63.2% 41.3% 52.3%

CNN (ours) 71.4% 39.0% 55.2%

CNN+CBA+BRC (ours) 71.8% 39.6% 55.7%
CNN+CBA+BRC+FT (ours) | 72.3% 40.1% 56.2%

80/20 Split Kochetov et al. [9] 73.0% 58.4% 65.7 %
& Acharya et al. [1] 84.1% 48.6% 66.3%
4-class Maet al. [12] 64.7% 63.7% 64.2%
CNN (ours) 78.8% 53.6% 66.2%

CNN+CBA+BRC (ours) 79.7% 54.4% 67.1%
CNN+CBA+BRC+FT (ours) | 83.3% 53.7% 68.5%

80/20 Split CNN (ours) 83.3% 60.5% 71.9%
& CNN+CBA+BRC (ours) 76.4% 71.0%___73.7%
2-class CNN+CBA+BRC+FT (ours) ‘ 80.9% 73.1% 77.0%
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Ablations: Augmentations
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Ablations: Smart Padding
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Ablations: Blank Region Clipping
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Ablations: Device Specific Fine- tuning

69.00%
68.50%
68.50%
68.00%
67.50%
67.10%
67.00%

66.50%

66.00%
Stage 1 = Stage 2

RespireNet | EMBC 2021 | Microsoft Research



Conclusion

RespireNet a simple CNN-based model, with a suite of novel
techniques to utilize small-sized ICBHI dataset.

e Concatenation Based Augmentation
e Smart Padding

e Blank Region Clipping

e Device-Specific Fine Tuning
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