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Motivation
Lung Auscultation: Listening to sounds from the lung with a 
stethoscope to diagnose and treat respiratory diseases. 

Pros
• Low-cost, non-invasive process and simple to get signal
• Provides valuable information for screening and diagnosing 

lung diseases

Cons
• Requires medical professionals to analyze the respiratory 

signal
• Subjectivity in interpretations causing inter-listener variability.
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https://healthtimes.com.au/hub/medical-technology/65/news/nc1/the-difference-between-stethoscopes-for-nurses-doctors/3518/



Solution

Automated analysis, combined with digital stethoscopes can 
help overcome the drawbacks.
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Digital Stethoscope Respiratory Signal Automated Analysis Diagnosis Report



Abnormal Lung Sounds
Abnormal respiratory sounds like crackle and wheeze are useful in identifying specific 
respiratory diseases.

Wheeze: 
• High-pitched continuous sound with frequency 100-2500Hz and Time > 80msec
• Typical symptom of asthma and COPD (chronic obstructive pulmonary disease)

Crackle:
• Discontinuous, non-tonal sound 
• With frequency ~650Hz and duration ~5msec (for fine crackles, or frequency of 100-

500Hz and duration ~15msec (for coarse crackle)
• Associated with COPD, chronic bronchitis, pneumonia and lung fibrosis
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Our Focus

Automated method for detecting abnormal respiratory sounds 
crackle and wheeze.

Contributions:
• RespireNet, a simple CNN-based model for automatic classification 

of respiratory sounds.
• Detailed analysis of the ICBHI dataset
• Efficient use of limited data by a suite of novel techniques
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ICBHI Dataset

ICBHI Challenge dataset is the largest publicly available respiratory 
sound dataset.

Dataset Stats:
• 920 recordings containing 6898 respiratory cycles
• Total duration of recordings 5.5 hours
• Collected from 126 patients
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Normal Crackle Wheeze Both Total
Cycles 3642 1864 886 506 6898



Proposed Method: Overview
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Pre-Processing: Data Standardization
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Recordings have varying sampling rates (4kHZ – 44.1kHZ)
• Down-sample recordings to 4kHz

Noise Removal
• Apply 5th order Butterworth band-pass filter to remove noise (heartbeat, 

background speech, etc)

Normalization
• Normalization to map values between (-1.0, +1.0)



Data Augmentation
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ICBHI dataset has small size and huge class imbalance
• (~53% Normal, ~27% Crackle, ~13% Wheeze, 7% Both)

Standard Augmentations
• Noise addition
• Speed variation
• Random Shift
• Pitch Shift



Concatenation Based Augmentation
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Smart Padding
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• Breathing cycle length varies within patients as 
well as across patients

• ICBHI dataset has varying length of breathing 
cycles ranging from 0.2s to 16.2s (mean cycle 
length = 2.7s)

• Cycle length must be standardized as CNN model 
requires fixed size input



Smart Padding
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• Standardize cycle length to 7s
• For sample with cycle length < 7s, apply smart padding.
• Experiments demonstrate that a length of 7 second works best for the 

given dataset



Smart Padding
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Blank Region Clipping
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Many breathing cycles have no information in 
the higher frequency range
• Eg: 100% of the Litt3200 device samples 

had no information in the 1500 – 2000 
Hz band

Blank regions in the spectrograms create 
false edges and hurt network performance

GradCAM++ Visualization



Blank Region Clipping
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Selectively clip off blank regions



Network Training: Stage 1
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ResNet34 Backbone with pre-trained ImageNet weights

• Categorical Cross-entropy loss
• Optimizer: SGD with momentum (=0.9)
• Batch-Size: 64
• Fixed LR: 1e-3
• Epochs: 200



Network Training: Stage 2
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• ICBHI Dataset has samples from 4 different 
recording devices.

• Distribution of samples across devices is heavily 
skewed
• Eg: AKGC417L Microphone contributes to 63% 

of samples

• DNN fails to generalize across devices given the 
small size of the dataset

Breathing cycles across classes and devices



Network Training: Stage 2
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Device specific fine-tuning

Fine-tune the model from Stage 1 for each device 
separately

• LR: 1e-4
• Epochs: 50



Evaluation on ICBHI Dataset
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4 Class Classification
• Classify into 4 classes: Normal, Crackle, Wheeze, Both

• Pi and Ni are the number of correctly classified and total number of samples in class i, respect. (where i
in {normal, crackle, wheeze, both})

2 Class Classification
• Classify into 2 classes: Normal, Abnormal (Crackle/Wheeze/Both)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑃𝑃𝑐𝑐 + 𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃
𝑁𝑁𝑐𝑐 + 𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁

; 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑃𝑃𝑛𝑛
𝑁𝑁𝑛𝑛



Results
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Ablations: Augmentations
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Ablations: Smart Padding
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Ablations: Blank Region Clipping
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Ablations: Device Specific Fine- tuning
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Conclusion

RespireNet a simple CNN-based model, with a suite of novel 
techniques to utilize small-sized ICBHI dataset.

• Concatenation Based Augmentation
• Smart Padding
• Blank Region Clipping
• Device-Specific Fine Tuning
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Thank you 
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