Keratoconus Classifier for Smartphonebased Corneal Topographer

Siddhartha Gairola, Nipun Kwatra, Mohit Jain

Pallavi Joshi, Anand Balasubramaniam, Kaushik Murali

Collaboration between Microsoft Research, India and Sankara Eye Hospital

Motivation

- Keratoconus (KC): causes deformed cornea.
- Affects people aged 10-25 years, leading to (partial/complete) **blindness**.
- 2.3% in global south vs 0.05% in USA.
- In 2012, 27% of corneal transplants worldwide were to treat KC.
- Diagnosis requires expensive & bulky medical devices that increases inaccessibility.

Healthy Cornea Keratoconus Cornea

Keratoconus Diagnosis

Mires

Corneal Topographer

Keratoconus Diagnosis

Non-Keratoconus Example

Curvature Heatmap

Keratoconus Example

Dioptres (D) 9 14 19 24 29 33 37 38.5 40 41.5 43 44.5 46 47.5 49 51.4 55.5 60.5 65.5 70.5 75.5 80.5 85.5 90.5 95.5 100.5

R (mm) 40.6 24.9 18.1 14.2 11.7 10.0 9.1 8.8 8.4 8.1 7.9 7.6 7.3 7.1 6.9 6.6 6.1 5.6 5.2 4.8 4.5 4.2 4.0 3.7 3.5 3.4

SmartKC: Low-Cost Corneal Topographer

3

2

Intelligent Smartphone App

Output

SmartKC: Low-Cost Corneal Topographer

In a clinical evaluation on 101 eyes (34 KC, 67 Non-KC) by 4 ophthalmologists, SmartKC achieves a

Sensitivity: 92.3 - 94.1%

Specificity: 95.9% - 100.0%

To correctly identify people with the disease.

Sensitivity = TP/(TP+FN)

To correctly identify people without the disease.

Specificity = TN/(TN+FP)

Need for Automation

Corneal topographers are highly accurate. But ...

Output heatmaps need to be evaluated by doctors.

- 1 doctor per 1000 people in the Global South¹
- Doctors' evaluation suffers from subjectivity
 - Eg: In SmartKC evaluation, for 30.7% eyes atleast 1 of 4 doctors' diagnosis did not agree with the rest.
 - This number was 42.6% for Optikon Keratron (medical topographer)

Need for Automation

Requirements

- 1. An accurate, automated method to detect keratoconus,
- 2. works for low-cost devices (like SmartKC)

Goal: To enable mass screening for keratoconus and prevent blindness.

Related Work

Prior works have demonstrated efficacy of DNNs for keratoconus diagnosis.

Input: Color-coded heatmaps generated from clinical devices based on

- Optical Coherence Tomography
- Schiemflug-imaging
- Placido disc reflection

Output: Diagnosis (keratoconus or no-keratoconus)

Related Work

Prior work was only limited to medical-grade topographers.

Our Focus

Automated method for detecting keratoconus, from topography heatmaps generated by low-cost *SmartKC* device.

Contributions:

- a dual-headed CNN-based keratoconus detection algorithm for SmartKC,
- efficient use of limited data by using 2-stage transfer learning and domain specific augmentations,
- evaluation on topography heatmaps from actual patients using SmartKC and a medical-grade topographer (Optikon Keratron).

Dataset

SmartKC dataset: had only few samples 114 (68 Non-KC, 46 KC)

Keratron dataset: retrospective data from Keratron database at hospital

• 2110 samples: 1637 Non-KC, 473 KC

Each sample consisted of:

- 1. Axial heatmap, Tangential heatmap, Mire Image
- 2. Simulated keratometry values (K1, K2) and PPK (percentage probability of keratoconus)

Proposed Solution: Overview

Proposed Solution: Pre-processing

Standardized

• Heatmaps cropped and resized to fixed shape: 512 x 512

Normalization

• Z-normalization to each channel of RGB image

•
$$x' = \frac{(x-\mu)}{\sigma};$$

• where μ is dataset mean, σ is dataset standard deviation

Proposed Solution: dual headed CNN

Proposed Solution: dual headed CNN

Proposed Solution: 2-stage transfer learning

 Pretrain model on ImageNet dataset, fine-tune on Keratron dataset (2110 samples)

- 200 epochs, LR: 1e-3 (fixed)
- Fine-tune on 50% of SmartKC dataset.
 - 100 epochs, LR: 1e-4 (linear decay)

SmartKC vs Keratron (scale, location difference)

Proposed Solution: augmentations

Domain specific augmentations

No-KC

KC

Proposed Solution: augmentations

Mixup augmentations

Given samples x_i , x_j with labels y_i , $y_{i,j}$ new sample (x', y') given by:

x' =
$$\lambda x_i + (1 - \lambda) x_j$$

y' = $\lambda y_i + (1 - \lambda) y_j$
where $\lambda \in [0, 1]$

Results

Eval. Data	Model	Se	Sp	Acc
SmartKC-data (57 samples)	SVM	80.4%	100.0%	92.1%
	Dual-head CNN [†]	65.2%	76.5%	71.9%
	Dual-head CNN*	91.3%	94.2%	93.1%
Keratron-data (114 samples)	PPK	89.4%	94.2%	92.2%
	SVM	78.3%	95.5%	88.6%
	Dual-head CNN [‡]	94.7%	93.4%	93.9%

Sensitivity (Se) = TP/(TP+FN)

Specificity (Sp) = TN/(TN+FP)

Accuracy (Acc) = (TP+TN)/(TP+FN+TN+FP)

†: fine-tuned only on SmartKC-data.

*: fine-tuned on Keratron-data (stage-1) and 50% of

SmartKC-data (stage-2).

‡: fine-tuned only on Keratron-data (stage-1)

What next?

Scaling the SmartKC system for multi-site larger evaluation

Training model on larger dataset

Real-world deployment of SmartKC in Sankara clinics

• With automated diagnosis for mass screening of keratoconus

