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Abstract

Keratoconus, an ocular condition marked by progres-
sive corneal thinning and outward bulging, presents diag-
nostic challenges due to the high cost and lack of porta-
bility in conventional corneal topographers. These limi-
tations restrict accessibility for many, necessitating afford-
able and mobile alternatives. Innovations like SmartKC [9]
offer a low-cost and portable alternative, however, there
still remains some gaps in performance when compared
to commercial topographers. In this paper, we introduce
SmartKC++, a series of innovative methodological im-
provements to the image processing pipeline of SmartKC,
aimed at significantly enhancing its diagnostic precision
and reliability. Our comprehensive evaluation on a dataset
comprising 303 eye images reveals that SmartKC++ boosts
the accuracy of automated keratoconus diagnosis by 7.69%
relative to SmartKC.

1. Introduction
Keratoconus is an ocular disorder in which the cornea—

the clear, dome-shaped front of the eye—gradually bulges
outward into an irregular conical shape. The prevalence of
keratoconus is varied, ranging from 0.5% in the US [14]
to 2.3% in India [13]. Early treatment options for kerato-
conus include corrective glasses and collagen cross-linking
surgery, whereas severe cases require corneal transplants.
Due to the high surgery cost and limited availability of
corneas for transplant, keratoconus is one of the leading
causes of partial and complete blindness in middle- and
low-income countries [11].

The clinical gold standard for diagnosing keratoconus in-
volves estimating the curvature of corneal surface using a
technique called corneal topography. This procedure, per-
formed using medical devices such as Optikon Keratron and

Oculus Pentacam, is non-invasive. However, these devices
are bulky, non-portable, costly (Pentacam costs upwards
of USD 20,000), and require skilled technicians to oper-
ate. Hence, they are not accessible to a large portion of
the population. To address this, several smartphone-based
screening methods have been proposed [2, 9, 19]. Many of
these methods involve attachments to capture images of the
eye, which are then processed for keratoconus detection.
Among them, SmartKC1 [9] stands out as the only tech-
nique that outputs tangential and axial heatmaps of corneal
curvature, along with diagnostic metrics such as sim-K val-
ues [6]. It achieves this by adapting the operating principle
of corneal topographers to smartphones. The key compo-
nents of SmartKC are: (1) a 3D-printed placido-disc at-
tachment to project concentric rings onto the cornea, (2)
a data-collection smartphone app for reliable data capture
(incorporating quality checks for tilt and offset), and (3) an
image processing pipeline that analyzes reflected placido-
disc patterns (called mires) to estimate corneal curvature by
reconstructing the corneal surface. For more details on the
workings of SmartKC, please refer [9].

Although a promising low cost and portable alternative,
SmartKC does exhibit some limitations. For example, in
the original SmartKC evaluation [9], 11.4% of the collected
data was discarded due to the presence of “broken mires”,
despite the quality checks implemented in the data collec-
tion app. The wide variability in the quality of input im-
ages may arise due to the hand-held nature of data capture,
tear film artifacts in the eye, etc. These broken mires lead
to errors in downstream mire segmentation and localiza-
tion, highlighting a key limitation in the robustness of the
SmartKC’s image processing pipeline. Also, the mean ab-
solute error in the sim-K1 values reported by SmartKC and
medical corneal topographers ranges from 4.22 (in the dis-

1https://github.com/microsoft/SmartKC-A-Smartphone-based-
Corneal-Topographer
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Figure 1. Overview of SmartKC++ - changes made to the mire segmentation, localization and corneal surface reconstruction mechanisms
to enhance the performance and robustness of the system

carded images) to 1.29 (in the non-discarded images), un-
derscoring the need for improvement.

To address these limitations, we propose SmartKC++,
comprising of three novel modifications to the SmartKC im-
age processing pipeline (Figure 1): (1) improved mire seg-
mentation using a U-Net model trained on labels generated
from traditional image processing techniques, (2) improved
mire localization using a clustering algorithm that utilizes
local spatial information in the image to identify broken
mires, and (3) improved Arc-Step method for corneal sur-
face reconstruction to accommodate any missing points due
to broken mires.

We evaluate SmartKC++ on a real-world dataset of
303 eye images collected from 163 patients. Our findings
demonstrate a significant improvement in system robust-
ness, leading to a reduction in the discard rate of collected
images from 11.4% to 0%. Our algorithm automatically ad-
dresses broken mires, resulting in reliable heatmaps. We ob-
serve qualitative enhancements in the generated heatmaps
(Figure 2) and quantitative improvements in the agreement
of the sim-K values. The mean absolute error in the sim-
K1 values reduces substantially from 4.22 to 1.78 (for dis-
carded images). Additionally, we compare the performance
in providing automated diagnoses, achieving a 7.69% im-
provement in accuracy, from 81.32% using SmartKC [9]
(Sens. = 87.27%, Spec. = 72.22%) to 89.01% using
SmartKC++ (Sens. = 87.27%, Spec. = 91.67%). We be-
lieve that SmartKC++ holds potential for large-scale kera-
toconus screening.

2. Related Work

Several prior methods have been proposed for portable
and/or low-cost screening of keratoconus [2, 3, 18, 19]. For
instance, Mahmoud and Mengash [18] proposed recon-
structing the 3D corneal surface from the 2D frontal and
lateral eye views. Their method classified input images
into one of the four stages of keratoconus (normal, mild,
moderate and severe). Kobashi et al. [16] introduced a
smartphone-based keratoscope that functions by capturing
“selfies” of patients. The setup consisted of two 3D-printed
LED rings to generate placido rings on the cornea, and the
captured images were analyzed to calculate corneal param-
eters such as steepest and flattest keratometry and astigma-
tism. Askarian et al. [3] utilize a 3D-printed image acquisi-
tion tool to capture panoramic 180°views of the eye. These
images are then processed using edge detection algorithms
and graded using SVMs for the presence of keratoconus.
Similar to SmartKC [9], many of these methods use 3D-
printed attachments with smartphones. However, our sys-
tem is complementary to these methods since they do not
produce corneal curvature heatmaps (axial and tangential).
SmartKC [9] is the only smartphone-based corneal topog-
rapher, which provides corneal curvature heatmaps. There-
fore, we build on SmartKC and improve the robustness of
the system, and the quality of heatmaps generated.

It is noteworthy that while deep learning methods have
been extensively explored for other ophthalmic diseases
such as glaucoma [8, 23, 24] and diabetic retinopathy [4, 7],
deep-learning research on keratoconus is limited due to lack



of public datasets [17]. Most prior work on DL-based
keratoconus screening relies on self-collected private data
[1, 10].

3. Methodology

The SmartKC system [9] consists of three main com-
ponents: a placido disc attachment, a data collection app,
and an image processing pipeline. The image processing
pipeline comprises of several steps. First, it segments the
mires in the image using traditional image processing tech-
niques. Second, mire points are localized using a radial
scanning algorithm. Finally, the 3D corneal surface is re-
constructed using the Arc-Step method [15], followed by
Zernike polynomials based surface fitting [5, 21]. In this
work, we exclusively propose modifications to the image
processing pipeline to enhance its resilience to variations in
data capture, thereby refraining from hardware and data col-
lection app changes. Below, we highlight challenges faced
in the current image processing pipeline and propose corre-
sponding solutions.

3.1. U-Net based Mire Segmentation

Problem: The mire segmentation step in SmartKC uti-
lizes a threshold-based method applied over a fingerprint
detection algorithm [12]. This approach, while straightfor-
ward, often introduces artifacts or fails to segment mires
accurately (see Figure 1), limiting the robustness of the sys-
tem. Given that mire segmentations is the first step of the
pipeline, any failures in this step cascade further into the
pipeline. Enhancing the robustness of this step is thus cru-
cial for the overall accuracy and reliability of the system.
Proposed Approach: Deep learning approaches have
shown much promise for segmentation tasks over the tra-
ditional image processing approaches like the ones used
in SmartKC. Motivated by this, we set out to train a U-
Net [20]-based model to achieve robust and accurate mire
segmentation. U-Net models have shown high accuracy and
robustness for segmentation tasks, especially those involv-
ing medical images. However, ground truth segmentation
annotations for mires are required for supervised training.
Manually obtaining such annotations is both laborious and
costly. To address this, we leverage the current threshold-
ing and fingerprint detection based segmentation method of
SmartKC as a noisy annotator. Failure cases (such as Fig-
ure 1 top row) were removed manually. Further, we simul-
taneously apply three types of augmentations: noise addi-
tions, modifications to image sharpness, and spatial aug-
mentations (details provided in the Appendix). Although
the annotations provided by the SmartKC system can be
noisy and contain errors, since these errors were not sys-
tematic, the U-Net model was able to learn a representation
that demonstrated robustness to variations in input images

and outperformed the thresholding based mire segmentation
method of SmartKC (Figure 1 bottom row).

3.2. Clustering based Mire Localization

Problem: The radial scanning algorithm [9] used in
SmartKC fails to localize mires accurately when segments
of mires are absent in the raw capture (Figure 1). This
algorithm functions by projecting rays from the center of
the segmented image along discrete angles (0° - 360°), and
numbering the mires sequentially based on observation or-
der. However, it solely relies on the relative sequence
of mires along a meridian, disregarding other spatial con-
straints. Consequently, points on the same mire (e.g., at
X° and X+1°) may receive different mire numbers if mire
segments are missing (refer Figure 1). If left uncorrected,
this error propagates to subsequent mires along the same
angles. Although the U-Net based segmentation model en-
hances the robustness of mire segmentation, it does not ad-
dress cases involving missing mire segments in the captured
image.
Proposed Approach: To address this issue, we propose a
novel clustering algorithm for mire points, inspired by con-
nected components in a graph. Leveraging the spatial prox-
imity of points on the same mire, we enforce local consis-
tency in mire numbers. This helps in identifying missing
mire segments and managing them appropriately in the sub-
sequent steps. The steps of the mire localization algorithm
are detailed below.

First, we use the radial scanning algorithm to identify
candidate mire points. This yields a mapping between mires
and pixel locations, where each (mire num, angle) ordered
pair maps to a pixel location. Note that this step may output
erroneous mire number assignments. Next, we construct an
undirected graph, with mire points as nodes. By introduc-
ing the concept of spatial proximity, we connect two nodes
with an edge if they are sufficiently close in the radial and
tangential directions. We empirically set the tangential tol-
erance to an arc-length of 4° (2° on either side of the point)
and the radial tolerance to a small δ value (of 1 pixel). Next,
we identify connected components within the constructed
graph. Each component represents a set of mire points in-
dexed by (mire num, angle) and corresponds to a continu-
ous mire segment.

In the subsequent step, we rectify the mire numbers iden-
tified by radial scanning, using the spatial information em-
bedded in the connected component. With our strict crite-
ria for adding edges between nodes, we assume that points
within the same connected component belong to the same
mire. Thus, the presence of two or more unique mire num-
bers on a connected component indicates incorrect mire
numbering within the component, leading to a systematic
error (mire shifts, as observed in Figure 1) in subsequent
mires. To address this, we identify the most frequently ob-



served (mode) mire number in the connected component
and calculate ∆ = mode − mire num for all points in
the connected component. ∆ is positive for missing mire
segments and negative for additional artifacts present in the
image. Assuming that only a fraction of the points are in-
correctly numbered within the connected component, we
update the mire num for all points with the mode. Ad-
ditionally, we propagate ∆ among subsequent mire points
along the same angles to rectify the systematic mire shift.

Finally, we remove mire points where more than one
pixel location exists for the same (mire num, angle) value.
This situation may arise due to the propagation of ∆ in the
previous step, particularly in cases where additional arti-
facts are present between mires. This procedure results in a
set of points where mires (even broken ones) are correctly
numbered, which is subsequently used for generating the
corneal surface.

3.3. Robust Arc-Step Method

Problem: Both in commercial topographers and in
SmartKC, the Arc-Step method [15] combined with Zernike
polynomials [5, 21, 22], is employed to reconstruct the 3D
corneal surface from the input mire image, camera param-
eters, and placido attachment specifications. The algorithm
fits a cubic polynomial to the cornea’s shape along indi-
vidual meridians. Along a specific meridian, the algorithm
proceeds radially outward and calculates the corneal point
corresponding to mire n by allowing the curvature to vary
smoothly between mire n− 1 and mire n. However, a prob-
lem arises as the mire localization method proposed earlier
allows for missing points in some mires, i.e., it is not nec-
essary for points to be present for all angles in all mires.
Hence, the corneal point for mire n−1 may not be available
at the time of calculating mire n, rendering the Arc-Step
method incompatible with the proposed mire localization
approach.
Proposed Approach: To address this issue, we modify the
Arc-Step method to accommodate missing points on the
corneal surface. Instead of restricting the calculation to the
corneal point for mire n − 1 along the meridian, our pro-
posed modification involves considering the corneal point
corresponding to the last available inner mire for mire n
(i.e., x = max([i]); ∀ i < n). The Arc-Step equations are
modified accordingly to take this varying distance between
subsequent mires into account. Note that this method differs
fundamentally from the existing approach in SmartKC [9],
which extrapolates for missing information in the original
input mire image during the Arc-Step method itself. In our
method, the extrapolation of missing information is instead
done during the Zernike polynomials fitting phase. Since
the Arc-Step method is 1-D, it has very limited informa-
tion from neighbors; compared to the Zernike fitting method
which can take into account all 2-D neighbors for the ex-

trapolation, and thus yield much superior fitting.

4. Experiments
4.1. Datasets

To develop and evaluate SmartKC++, we conducted a
single-center study, collecting eye images from patients at
a local eye hospital in Anonymous City. The eye hospital is
a leading eye care and teaching institution in the area, con-
sisting of >15 eye doctors (including >3 cornea specialists)
and >10 optometrists, and treats over 500 patients every
day. The study was approved by the hospital’s Institutional
Review Board (IRB) and informed verbal consent was ob-
tained from all patients prior to enrollment in the study. The
data collection protocol is outlined as follows:

• Patient Selection: Patients were evaluated by ophthal-
mologists using slit lamps. Those exhibiting symp-
toms of keratoconus were recommended for inclusion
in the study, while some patients without symptoms
were randomly included as controls.

• Corneal Topography Scans: The Optikon Keratron
device, a medical-grade corneal topographer, was used
as the ground truth device. It generated axial and tan-
gential heatmaps and outputted Sim-K values, which
were utilized by the ophthalmologist for keratoconus
diagnosis.

• Data Collection: The SmartKC data collection app [9]
was used to collect data (one mire image per eye) for
our study.

The final dataset consists of 303 smartphone images (cap-
tured using the SmartKC app) and curvature heatmaps (ax-
ial and tangential, generated using the Optikon Keratron)
from 163 patients. Among them, 133 (43.89%) were diag-
nosed with keratoconus and 170 (56.11%) were classified as
normal, based on an assessment of the Keratron heatmaps
by an ophthalmologist. The data collection was conducted
in two phases, with 196 images (62 keratoconus, 134 nor-
mal) collected from 109 patients in Phase-1 and 107 images
(71 keratoconus, 36 normal) from 54 patients in Phase-2.

SmartKC++ was tuned and validated with the Phase-1
data. Since images of both eyes (left and right) of the pa-
tients were collected, the dataset split for training and val-
idation was done at the patient level to prevent the model
from being trained on one eye of a patient and evaluated
on the other. We report the mean results of the method on
five different train/validation splits of the Phase-1 data. Ad-
ditionally, to evaluate the generalization of models trained
on the Phase-1 dataset, we use the Phase-2 data as a test
set. Within both these sets, there are instances where the
SmartKC image processing pipeline [9] fails (14 images in
Phase-1 and 16 images in Phase-2), leading to artificially
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Figure 2. Qualitative improvement: Heatmaps generated by SmartKC++ closely resemble the Keratron heatmaps compared to those output
by SmartKC.

high Sim-K values and artifacts in the heatmaps. We identi-
fied such cases manually. These images, contributing to the
discard rate in SmartKC, are identified as the failure sub-
set of SmartKC. The remaining images, on which SmartKC
generates reasonable heatmaps, constitute the success set.
Reporting combined results on both subsets leads to un-
fairly high error rates for SmartKC. Hence, we report the
results on the success and failure subsets separately for a
fair comparison.

In summary, we report results on two datasets: Phase-
1 and Phase-2. Phase-1 is a cross-validation dataset, while
Phase-2 is a purely evaluation set. Both these datasets are
split into success and failure subsets, based on SmartKC’s
performance.

4.2. Evaluation

We evaluate SmartKC++ on three key aspects: (A) Vi-
sual similarity between heatmaps: We present examples of
visual improvements in the output heatmaps resulting from
our proposed changes, demonstrating higher visual similar-
ity with the ground truth Keratron heatmaps. (B) Error in
Sim-K values: The error in Sim-K values is measured us-
ing three metrics: the Pearson correlation coefficient, the

mean absolute error (MAE), and the mean absolute per-
centage error (MAPE) between the predicted and Keratron
ground truth values. (C) Accuracy of automated diagnoses:
Automated diagnoses are obtained by thresholding the Sim-
K values, ensuring the interpretability of the diagnoses. To
identify the appropriate threshold, we employ a random for-
est model consisting of three decision trees. The input fea-
tures for this model are Sim-K1, Sim-K2, and the difference
between Sim-K1 and Sim-K2. The diagnostic performance
is evaluated using six metrics: sensitivity, specificity, pre-
diction accuracy, precision, recall, and F1-score.2

4.3. Results

4.3.1 Heatmap Similarity

Figure 2 showcases the visual improvements in two input
images. SmartKC exhibits errors in segmenting and localiz-
ing mires, leading to artifacts in the heatmaps. SmartKC++
addresses these issues, resulting in heatmaps closely resem-
bling Keratron heatmaps.

2Code implementation of the method will be made publicly available.



Sim-K1 Sim-K2
MAE MAPE Corr. MAE MAPE Corr.

Success Set SmartKC 3.18 6.42 0.81 3.17 6.63 0.58
SmartKC++ (ours) 3.17 6.48 0.83 2.97 6.32 0.71

Failure Set SmartKC 4.67 9.46 0.38 5.80 12.31 0.13
SmartKC++ (ours) 3.33 6.83 0.85 2.96 6.34 0.77

Table 1. Sim-K prediction on Phase-1 dataset. Agreement between the predicted Sim-K values and those obtained from Keratron are
shown. The results highlighted in bold are the best in the corresponding subset (success vs failure). SmartKC++ outperforms SmartKC [9]
in both aspects: prediction error and correlation. The means of 5 independent runs of the method are reported here. The standard deviations
are reported in the supplementary material. The failure and success sets are as defined in section 4.1.

Sim-K1 Sim-K2
MAE MAPE Corr. MAE MAPE Corr.

Success Set SmartKC 1.29 2.64 0.89 2.25 4.82 0.066
SmartKC++ 1.33 2.72 0.92 1.38 3.04 0.78

Failure Set SmartKC 4.22 7.49 0.62 8.22 16.15 -0.25
SmartKC++ 1.78 3.03 0.925 2.01 3.94 0.928

Table 2. Sim-K prediction on Phase-2 dataset. Agreement between the predicted Sim-K values and those obtained from Keratron are
shown. SmartKC++ maintains a similar performance as SmartKC [9] on the success set, but significantly outperforms SmartKC on the
failure set. The proposed method also significantly improved the Sim-K2 correlation across both subsets. The failure and success sets are
as defined in section 4.1.

4.3.2 Errors in Sim-K

Tables 1 and 2 show the performance comparison of the
proposed method on the Phase-1 and Phase-2 datasets re-
spectively. SmartKC++ outperforms SmartKC on both the
success and failure sets. Unlike SmartKC, which struggles
with the failure set, SmartKC++ maintains robustness and
decreases the Sim-K1 MAPE from 7.49% to 3.03% thereby,
demonstrating consistent performance across both success
and failure subsets. Notably, SmartKC++ also significantly
improves the correlation of Sim-K1 on the failure subset
and that of Sim-K2 across both subsets.

4.3.3 Automated Diagnosis

Tables 3 and 4 show the performance of SmartKC++ on
the Phase-1 and Phase-2 subset, respectively, in automati-
cally diagnosing keratoconus, by thresholding the Sim-K1
and Sim-K2 values. SmartKC++ outperforms SmartKC by
2.92% on the Phase-1 success set, by 19.04% on the Phase-
1 failure set and by 7.69% on the Phase-2 success set. As
mentioned earlier, the condition for a positive keratoconus
diagnosis is identified by fitting a random forest with 3 deci-
sion tree estimators, using Sim-K1, Sim-K2, and the differ-
ence between Sim-K1 and Sim-K2 as features. In the exper-
iments, we observed that Sim-K2 was not used in the deci-
sion process, with either Sim-K1 or the difference between
Sim-K1 and Sim-K2 often being repeated in one of the es-
timators. Hence, the condition for keratoconus diagnosis
only consists of these two features. The specific thresh-

old values were calculated as the mean of the thresholds
learnt by the decision trees for five separate runs on their
respective Phase-1 training sets. SmartKC++ achieves a
sensitivity of 90.00%, a specificity of 80.00%, and a predic-
tion accuracy of 85.71% on the Phase-1 failure set, whereas
SmartKC achieves a sensitivity of 85.71%, a specificity of
40.00%, and an accuracy of 66.67%. Since SmartKC fails
on the failure set, the corresponding Sim-K values lack di-
agnostic value, thereby exhibiting poor performance. It
must be noted that the failure set of the Phase-2 dataset
only consisted of keratoconus positive images, hence the
accuracy analysis for the failure set is skipped in Table 4.
On the success set, SmartKC++ outperforms SmartKC by
7.69% accuracy points, and exhibits higher specificity, pre-
cision, and F1 score. It is important to note that although
SmartKC++ outperforms Keratron, further large-scale eval-
uations are necessary to establish a reliable trend between
Keratron and smartphone-based corneal topographers.

4.3.4 Ablation Study

We assess the effectiveness of the individual components in
our proposed system: the U-Net based Mire Segmentation
model (UbMS) and the Clustering based Mire Localization
(CbML) method. The robust Arc-Step method is an accom-
modation for allowing broken mires, and hence is included
with the mire localization method. Directly evaluating these
components is challenging due to the absence of ground
truth (manual mire annotation is time-taking and expensive,



Dataset Device KT Condition Acc. Sens. Spec. Prec. Recall F1

Combined Keratron K1 >49.995 or
K1 - K2 >1.523 84.07 94.59 84.07 68.63 94.59 79.54

Success Set SmartKC K1 >44.55 or
K1 - K2 >2.644

93.74 90.00 94.96 85.97 90.00 87.86
SmartKC++ (ours) 96.66 91.67 98.33 95.00 91.67 93.26

Failure Set SmartKC K1 >44.55 or
K1 - K2 >2.644

66.67 85.71 40.00 66.67 85.71 75.00
SmartKC++ (ours) 85.71 90.00 80.00 85.83 90.00 87.79

Table 3. Automated diagnosis on Phase-1 dataset: Accuracy of automated diagnosis obtained by thresholding the Sim-K values. The
results highlighted in bold are the best results in the corresponding subset (success / failure). SmartKC++ outperforms SmartKC on all
metrics. Notably, SmartKC++ significantly improves the performance on the failure subset. Only the mean value of 5 runs is reported in
the table. The standard deviation is provided in the supplementary material.

Dataset Device KT Condition Acc. Sens. Spec. Prec. Recall F1
Combined Keratron K1 >46.995 or (K1 - K2) >1.523 80.37 85.71 70.27 84.51 85.71 85.11

Success Set SmartKC K1 >44.35 or K1-K2 >2.644 81.32 87.27 72.22 82.76 87.27 84.96
SmartKC++ 89.01 87.27 91.67 94.12 87.27 90.57

Table 4. Automated diagnosis on Phase-2 dataset: Accuracy of automated diagnosis obtained by thresholding the Sim-K values.
SmartKC++ outperforms SmartKC on all metrics. Note that the Phase-2 failure dataset consisted of only keratoconus positive images,
hence the analysis for the failure set has been skipped here.

UbMS CbML Acc. F1 MAE K1 MAPE K1 MAE K2 MAPE K2
✗ ✗ 66.67 75.00 4.67 9.46 5.80 12.31
✓ ✗ 84.29 86.00 3.79 7.56 3.19 6.82
✗ ✓ 85.71 87.50 3.42 6.93 3.15 6.70
✓ ✓ 85.71 87.79 3.34 6.83 2.96 6.34

Table 5. Performance of SmartKC++ with and without various components on the Phase-1 failure dataset. UbMS: U-Net based Mire
Segmentation, CbML: Clustering based Mire Localization. The mean value of 5 runs is reported. The standard deviation is provided in the
supplementary material.

hence not feasible). Instead, we indirectly evaluate their ef-
fectiveness through an ablation study, as presented in Table
5. We highlight that both components are essential to the
improved performance of SmartKC++, with a combination
of both components achieving the best performance.

5. Conclusion

In this paper, we propose SmartKC++ to enhance the
accuracy and robustness of SmartKC [9] by improving mire
segmentation, localization, and the 3D corneal surface re-
construction method. We train and evaluate the proposed
enhancement on a real-world dataset of 303 eye images.
In an evaluation with 107 test images, we obtain an ac-
curacy of 89.01% (sensitivity = 87.27% and specificity =
91.67%) on automated diagnosis, which is 7.69% better
than SmartKC in detecting keratoconus in an automated
manner. SmartKC++ also achieves reduced errors in the
reported Sim-K values. We believe our system holds great
promise for mass screening of keratoconus, especially in re-
mote and resource-constrained areas.
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