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Examining the challenges 
of blood pressure estimation 
via photoplethysmogram
Suril Mehta 1*, Nipun Kwatra 1, Mohit Jain 1 & Daniel McDuff 2

The use of observed wearable sensor data (e.g., photoplethysmograms [PPG]) to infer health 
measures (e.g., glucose level or blood pressure) is a very active area of research. Such technology can 
have a significant impact on health screening, chronic disease management and remote monitoring. 
A common approach is to collect sensor data and corresponding labels from a clinical grade device 
(e.g., blood pressure cuff) and train deep learning models to map one to the other. Although well 
intentioned, this approach often ignores a principled analysis of whether the input sensor data have 
enough information to predict the desired metric. We analyze the task of predicting blood pressure 
from PPG pulse wave analysis. Our review of the prior work reveals that many papers fall prey to data 
leakage and unrealistic constraints on the task and preprocessing steps. We propose a set of tools to 
help determine if the input signal in question (e.g., PPG) is indeed a good predictor of the desired label 
(e.g., blood pressure). Using our proposed tools, we found that blood pressure prediction using PPG 
has a high multi-valued mapping factor of 33.2% and low mutual information of 9.8%. In comparison, 
heart rate prediction using PPG, a well-established task, has a very low multi-valued mapping factor 
of 0.75% and high mutual information of 87.7%. We argue that these results provide a more realistic 
representation of the current progress toward the goal of wearable blood pressure measurement via 
PPG pulse wave analysis. For code, see our project page: https:// github. com/ lirus7/ PPG- BP- Analy sis

The COVID-19 pandemic has highlighted the acute need for technology to support remote health  care1,2. 
Consultancy  McKinsey3 reported a 40-fold increase in the use of telehealth services and a 40% increase in 
consumer interest in virtual health solutions when compared to pre-COVID-19 statistics. To provide an example, 
the ability to estimate vital signs from sensors available in smartphones and wearable devices could have a 
significant impact on the effective management of diseases (e.g., COVID-19, hypertension, diabetes). Frequent 
measurement of physiological parameters can help in managing medication dosages and understanding the 
effects of lifestyle changes on health.

The estimation of vital signs traditionally relies on customized sensors that measure physical or chemical 
properties of the body. For example, digital sphygmomanometers use sensors to measure the oscillations in the 
arteries to quantify blood pressure. Although accurate, such medical devices are far from ubiquitous, often are 
not easy to access and are uncomfortable to use for extended periods of time. An alternative approach, promoted 
by the field of ubiquitous computing is to leverage sensors already present in every day devices for estimating 
health parameters. For example, heart rate can be measured using a smartphone camera by analyzing subtle 
changes in skin color as the heart pumps blood around the  body4,5. This technology is now available on billions 
of devices, Google Fit (https:// www. google. com/ fit/). Recent work has presented proof-of-concept measurement 
of oxygen  saturation6, blood  pressure7, and hemoglobin  levels8 via smartphones.

Existing research work can be broadly divided into two categories: (1) approaches that are developed from 
first principles to imitate an established medical method for measurement or  diagnosis9,10, and (2) approaches 
where input (sensor) data and corresponding gold-standard data are collected using a medical grade device and 
machine learning models are trained to discover a relationship between the input and  output11,12. In this paper, 
we focus on the latter category. Although well-intentioned, such data-driven approaches ignore a principled 
analysis of whether the input data have the necessary information to predict the desired health measure. As a 
result, numerous human and compute hours are wasted in developing and training deep learning models for 
prediction tasks that may be ill-posed or not feasible.

We consider the task of predicting blood pressure (BP) non-invasively. Blood Pressure is the pressure applied 
on arterial walls as the blood circulates through the body. It depends on multiple factors, including blood volume, 
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blood viscosity, and stiffness of blood vessels. Abnormally high or low blood pressure can result in heart attack, 
stroke, and  diabetes13,14 thus it is recommended to measure BP frequently.

The methods to measure blood pressure non-invasively can be broadly categorized into two approaches: (i) 
The pulse transit time (PTT)  method15–17 is a popular, non-invasive technique for measuring blood pressure 
based on the time delay for a pressure wave to travel between proximal and distal arterial sites. The PTT approach 
has strong theoretical underpinnings based on the Bramwell-Hill  equation18, which relates PTT to pulse wave 
velocity and arterial compliance. The Wesseling model captures the relationship between arterial compliance and 
blood  pressure19. However, it is important to note that, PTT can change independently of BP due to factors such 
as aging-induced arteriosclerosis, and smooth muscle contraction. Hence, it needs to be calibrated from time to 
time. (ii) Pulse Wave Analysis (PWA) is a method used to estimate blood pressure (BP) by extracting features 
from an arterial waveform. This is typically performed using a photoplethysmography (PPG) waveform. PPG is 
an optical signal obtained by illuminating the skin (common sites are the finger, earlobe, or  toe20) with an LED 
and measuring the amount of transmitted, or reflected, light using a photodiode. PPG detects blood volume 
changes in the microvascular bed of tissue, as the blood volume directly impacts the amount of light transmitted/
reflected. Unlike PTT, PWA has weaker theoretical underpinnings as the small arteries interrogated by PPG are 
 viscoelastic15. Calibration is invariably necessary for PWA analysis methods to obtain reasonable results.

In this study, we concentrate on PWA measurement of BP. This method is beneficial because it only requires 
the use of a single sensor making it a more accessible solution. Predicting BP by analyzing PPG waveforms is 
an active area of  research7,21–25 and is already used in consumer products (https:// www. samsu ng. com/ global/ 
galaxy/ what- is/ blood- press ure/). However, we should note that “while these methods (PTT and PWA) have been 
extensively studied and cuff-calibrated devices are now on the market, there is no compelling proof in the public 
domain indicating that they can accurately track intra-individual BP changes”20,26. Therefore, although the features 
extracted from the PPG signal correlate with blood pressure, the signal’s adequacy for accurately predicting 
blood pressure remains unclear.

The discrepancy between recent  research27–29 claiming promising results on evaluation benchmarks for blood 
pressure, and other observational  studies20,26 which indicate a lack of a concrete theory to measure blood pressure 
using PPG signals via PWA, raises important questions. To help resolve this apparant contradiction, we conduct 
a comprehensive examination of the existing PWA techniques in the literature (Table 1). Our analysis reveals 
that a significant portion of the prior papers contain one or more of four common pitfalls: (a) Data Leakage: 
where data samples from the same patient are present in both the train and test sets, (b) Overconstraining: where 
data far from normal range is discarded as outliers, which statistically simplifies the task, (c) Unreasonable 
Calibration: where the calibration method is not tested over longer (e.g.,> 1 day) time scales, and (d) Unrealistic 
Preprocessing: which filters a significant portion of the dataset terming it as noisy. We analyze these pitfalls in 
detail in our results section.

Our analysis reveal a somewhat surprising lack of improvement (modulo the pitfalls above) in PPG-based 
blood pressure prediction. This is in contrast to the substantive improvements in non-invasive prediction of 
other vitals such as heart-rate during this time. This raises the question as to whether there is a limit/ceiling on 
the prediction accuracy. In order to answer this, we propose tools to examine whether an input sensor signal (x) 
(e.g., PPG) can be a good predictor of the output health label (y) (e.g., BP). For this, we want to evaluate whether 
an underlying function f exists, which captures the relationship between x and y, such that y = f (x) . We also 
want to measure the conditioning of this underlying function, and check whether it is well-conditioned or not? 
That is, whether small changes in x lead to small or large changes in y. It is important to ensure that (minor) noise 
in the sensor measurement (which is inevitable in a real-world setting) does not lead to significant error in the 
outputs. Our tool is based on information-theoretic notions of mutual information and multi-valued mappings. 
Using our proposed tool, we find that BP prediction using PPG has a high multi-valued mapping factor of 33.2% 
and low mutual information of 9.8%. In comparison, heart rate prediction using PPG, a well-established task, 
has a very low multi-valued mapping factor of 0.75% and high mutual information of 87.7%. This confirms that 
estimating BP from PPG is a challenging and an ill-conditioned problem and a more principled approach is 
needed in the future for framing such health measure prediction tasks.

Results
In this section, we present a systematic review of prior work predicting BP via PPG PWA (Figure 1), followed 
by a principled analysis using our proposed tools.

Review of the results and limitations of prior work
To motivate our work, we analyzed recent  research21–23,27,29,34,48–51 that reported results predicting BP via PPG 
PWA (see Table 1). These works relied on the  MIMIC52 dataset (Appendix C.1) containing continuous PPG 
signals and the corresponding arterial BP values. They evaluated their performance against the  AAMI53 and/
or  BHS54 standards (Appendix C.2). We found that they were prey to some common pitfalls, which resulted in 
misleading claims and over-optimistic results. For simplicity, we focus on the prediction of Systolic BP (SBP) 
rather than Diastolic BP (DBP), as SBP has a wider statistical range.

Before we begin, we should note that not all work (e.g.,35–38,50) followed the AAMI/BHS standards accurately. 
For example, some reported results on a test-set of fewer than 85 subjects. Moreover, although these works use 
the same MIMIC dataset, we found a lack of standardization in the train-test data splits and different BP ranges 
used for evaluation (due to differences in how the data were filtered) across the  literature27,29. With the absence of 
official source code, it was difficult to reproduce prior results and compare different methods. Hence, we trained 
our own reference deep learning model (Figure 2), similar to the methods presented in prior  research27,34,49. The 
reference network takes a three-channel input consisting of the original PPG waveform, along with its first and 
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second derivatives, and outputs the predicted SBP value. The model consists of an eight-layer residual  CNN55 
with 1D convolutions, and is trained using a mean squared error loss. We also explored 2D convolution based 
CNN models, such as DenseNet-16128 and ResNet-10155, taking spectrogram of the 1D PPG  signal27 and/or raw 
waveform as input. Among these, we found that the 1D CNN based architecture performed best.

Data leakage
The goal of any machine learning model is to generalize well to test data that will be seen in real-world  settings56. 
Even with a large training set, it is very unlikely that identical samples to those seen in the training set will appear 
at test time, thus generalization is crucial. Unfortunately, good performance on a training dataset does not always 
translate to good performance on a test set, as models can overfit. This is especially true for modern deep neural 
networks, which are highly over-parameterized and can easily memorize the training  data57. Thus, evaluating 
test performance accurately is an important step in understanding how a model will function in the real world. 
For this, the test data needs to be pristine, i.e., without any contamination from the training data. Unfortunately, 
contamination can and does happen in several ways.

We observed two types of overlap between training and testing splits (Figure  1A): data-overlap and 
domain-overlap.

Data-overlap corresponds to overlap of actual segments from a sample between the train-test sets. Domain-
overlap is more subtle, where although there is no direct overlap of samples, leakage may occur due to similarities 
in train-test data. In our case, it corresponds to using different records from the same patient in both the test 
and train sets (Figure 3).

Here, we consider a particular example from the literature,  PPG2ABP21, where the authors propose a U-Net 
based architecture to predict the ABP (Arterial BP) waveform from PPG. They obtain impressive results with a 
bias of −1.19 mmHg and error standard deviation (SD) of 8.01 mmHg (Note, there is an error in the computa-
tion of standard deviation in the  PPG2ABP21 evaluation script. We report the corrected results here.) on the SBP 
prediction task (Table 2), which is close to the AAMI standard. However, while analyzing their source code, we 
found both data and domain overlaps.

Data-Overlap: The  PPG2ABP21 data processing pipeline divides each PPG record ( ∼ 6 mins long) into 10-sec-
ond windows with an overlap of 5 seconds (URL: github.com/nibtehaz/PPG2ABP/blob/master/codes/data_pro-
cessing.py) (Figure 3). Using overlapping windows helps, as it increases the size of the training data. However, the 
problem arises when these 10-second samples are randomly split into train and test sets. Since the overlapping 
windows are generated before the random train-test split, the train and test sets can have samples with the same 
overlapping regions (Figure 3). A deep learning model can memorize values based on these overlapping portions, 
leading to artificially high accuracy on the test set.

Domain-Overlap: Due to the physiological differences between individuals, person-dependent models often 
outperform person-independent  models58. For example, for the BP prediction task, a model can learn the normal 
range of an individual’s BP and leverage that to provide more accurate predictions. Since the knowledge of an 
individual’s identity can impact a model’s accuracy, it is important that the identity of the subject is not leaked 
(even implicitly) between test and train sets, especially while building person-independent models. Since the 
PPG signature has been shown to identify an  individual59, the presence of PPG signals from the same individual 
in both train and test data can thus leak identity. This turns out to be the case in the PPG2ABP  work21, as they 
randomly split PPG records into test and train sets, resulting in different windows from the same patient present 
in both test and train sets (Figure 3).

To quantitatively evaluate the impact of data leakage, we compare the performance of the PPG2ABP network 
on three splits (Figure 3) – (1) No-overlap: the dataset is partitioned at the patient level with an 80-20% train-test 
split, (2) Domain-Overlap: each patient has multiple records ( ∼ 6 mins long), and these records are randomly split 
80–20% between the train-test set, i.e., records from the same patient can be present in both the training and test 
sets, and (3) Data-Overlap: We use the split provided by  PPG2ABP21 which divides the records into overlapping 
windows followed by an 80-20% train-test split. All splits consist of 10-second windows with an overlap of 
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Figure 1.  When designing end-to-end machine learning models researchers often use techniques such as: 
(A) providing the model with observations from similar patients, (B) constraining the task (e.g., limiting 
the distribution of labels), (C) calibrating models using data from a participant. When doing so it can often 
be difficult to identify how these steps impact the integrity of a model, or (D) preprocessing to filter out 
problematic samples (e.g., noisy inputs).
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5-seconds to maintain consistency with the split proposed in PPG2ABP. Table 2 shows the performance of the 
PPG2ABP network over the three splits. Domain-overlap significantly increases the accuracy of the PPG2ABP 
network from a standard deviation of 23.1 to 16.2 mmHg; Data-Overlap further improves the standard deviation 
to 8.01 mmHg. This analysis clearly shows that leakages, however subtle, can lead to seemingly high but artificial 
improvements. Note that for all analysis in the rest of this paper, we use the No-Overlap split.

Overconstraining the task
Health-related data typically have non-uniform Gaussian distributions, with the highest data density near the 
“normal” (or healthy) range, and falling exponentially as we move away from the normal. We observe a similar 
trend for BP data in both the Aurora-BP60 (Appendix C.1) and MIMIC datasets (see Figure 4). While points far 

Table 1.  The table summarizes the limitations of previous research and indicates whether the study exhibits 
specific pitfalls. The pitfalls are categorized into four categories: a) Data-split: Domain Overlap (denoted as 
D.O), Data Overlap (denoted as C.O), or Small test set (denoted as S.T). b) Over-constraining: SBP values and 
standard deviation (if provided) c) Unrealistic Pre-Processing: % of remaining dataset after pre-processing 
(if provided) d) Calibration: Correctly employed and justified for longer periods. The columns denote the 
presence or absence of each limitation, with Y (yes) indicating that the study has the limitation, N (no) 
indicating that it does not have that limitation, U (unknown) indicating that there is not enough information 
available, and “-” indicating that the research is not applicable to the pitfall. For additional information, please 
see Section Review of the results and limitations of prior work.

Method Dataset Results (SBP) Data-split Over-constraining Unrealistic Pre-Proc. Calibration

BiGRU  Attention30 MIMIC-II MAE=2.58 SD=3.35 U N
SD=14.1

N
∼10% –

AdaBoost31 MIMIC-II ME=0.09 MAE=8.22 
SD=10.38

N
D.O Y Y –

ANN32 MIMIC-II MAE=3.21 RMSE=4.23 U Y N
∼75% –

LSTM33 MIMIC-II MAE=3.23 STD=4.75 U U Y –

Ensemble  CNN34 MIMIC-III MAE=9.43 Y
S.T Y N

∼1.7% –

ANN35 MIMIC MAE=4.02 SD=2.79 U
S.T U Y –

Regression36 Custom Dataset MAE=6.90 SD=9.00 Y
S.T Y Y –

SVR37 Queensland ME=11.6 SD=8.20 Y
S.T Y Y –

Regression38 Custom Dataset MAE=3.90 SD=5.37 Y
S.T N Y –

ANN39 MIMIC-II ME=0.16 MAE=4.47 
SD=6.85

N
C.O U Y –

SVR40 Custom Dataset ME=5.10 SD=4.30 Y
S.T

N
SD=11.9 Y –

SVR41 Queensland MAE=4.76 SD=7.68
N
D.O
S.T

N Y –

Math  Models42 Custom Dataset MAE=7.66 Y
S.T

N
SD=12.5 Y –

ANN43 MIMIC MAE=3.80 SD=3.46 U
S.T N N –

Regression44 MIMIC MAE=4.90 SD=6.59
N
D.O
S.T

Y Y N

LSTM-CNN45 MIMIC-II ME=1.55 SD=5.41 U
S.T N N

∼15% –

AdaBoost46 MIMIC-II ME= -0.05 SD=8.90 N
D.O Y N

∼20% –

U-Net21 MIMIC-II ME=-1.58 SD=8.61 N
C.O Y Y –

CNN  Siamese27 MIMIC-II MAE=5.95 SD=6.90 [Calib] Y N N
∼5% N

U-Net29 MIMIC-II ME=4.30 SD=6.50 Y N
SD=13.5 Y –

1-D  CNN47 Custom Dataset SD=11.4
N
D.O
S.T

N
SD=16 Y –

LSTM48 MIMIC-II ME=4.05 SD=4.60
N
D.O
S.T

N N
∼50% –
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the participant level, while in Domain-Overlap, the split happens at the record level, and in Data-Overlap, the 
split happens at the window level.

Table 2.  Performance of  PPG2ABP21 on different test-train splits with varying degrees of dataset overlap. Even 
subtle leakages can result in large (but artificial) accuracy improvements.

Data Split

PPG2ABP 21

Bias (mmHg) SD (mmHg)

No-Overlap 1.11 23.1

Domain-Overlap 5.12 16.2

Data-Overlap −1.19 8.01
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Figure 4.  The distribution of systolic BP values in the: (left) Aurora-BP dataset and (right) MIMIC dataset. In 
the MIMIC dataset, the SBP values lie in the range 65–200 mmHg, however prior works ignore samples with 
SBP values outside the range of 75–165 mmHg.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:18318  | https://doi.org/10.1038/s41598-024-68862-1

www.nature.com/scientificreports/

from normal are rare, they are often crucial events (abnormally low or high BP) indicating serious health issues 
requiring medical attention.

However, we found that researchers often discard so-called “outliers”22,27,29 (Figure 1B), arguing that such 
samples are unlikely or have occurred due to noise in the data collection process. For example, the MIMIC 
dataset has SBP values ranging between 65 and 200 mmHg (75-220 mmHg in Aurora-BP), but Schlesinger 
et al.27 ignored samples outside the range of 75–165 mmHg, referring to the discarded values as “improbable”. 
Similarly, Cao et al.22 and Hill et al.29 use a constrained range of 75–150 mmHg, while according to the British 
Hypertension Society literature, 140–159 mmHg is Grade-1 (mild) hypertension, 160–179 mmHg is Grade-2 
(moderate) hypertension, and ≥180 mmHg is Grade-3 (severe)  hypertension54.

Constraining the data range has two problems. First, it leads to an incomplete evaluation, as the model is 
neither trained nor tested on samples from the discarded ranges. Second, since the statistical range of the output 
is reduced, this makes the prediction task artificially “easier” (i.e., a lower error can be achieved more easily), 
which may result in promising but misleading results. To quantitatively study the impact of constraining data 
ranges, we conducted an experiment using our reference network with different filtering of the data range. 
Table 3 shows the performance of our network when trained with three different SBP ranges: 65–200, 75–165 
and 75–150 mmHg. Even small restrictions in the output range can lead to a significant (perceived) improvement 
in accuracy, e.g., reducing the SBP upper limit from 165 to 150 mmHg results in an ∼11.4% improvement in the 
standard deviation. This can be explained as samples at the extremes often result in the highest prediction errors 
(as models tend to predict closer to the mean of the distribution making predictions on samples with very high 
or low ground-truth BP values the most inaccurate).

The exclusion of samples with SBP measurements outside the range ≥165 mmHg and ≤ 75 mmHg during 
the training of machine learning models may result in overlooking crucial physiological features, potentially 
concealing serious health conditions and introducing bias into the model. This practice not only limits the scope 
of the developed models but also hinders conclusions about their generalizability and real-world applicability, as 
they become less representative of the diverse patient populations they are intended to serve.

Unreasonable calibration
The relationships between health measures (e.g., PPG and BP) are often person dependent. For example, blood 
pressure (bp) is dependent on the patient’s heart rate (hr), blood viscosity (visc), stiffness of blood vessels (stif), 
etc., i.e., bp = f (hr, visc, stif , ...) . While the PPG signal might capture heart rate well, it may not be able to capture 
viscosity- and stiffness-related information. To solve this problem, it is common to propose the use of a calibra-
tion step, wherein a few PPG samples from each patient along with gold-standard BP values are used to calibrate 
the function f for that patient (Figure 1C). The model then learns a calibrated function, f̂  , for a specific patient, 
i.e., bp = f̂ (hr) , where the patient-specific parameters (visc, stif, ...) are folded into f̂ .

The literature does not offer a universally effective calibration strategy. Cao et al.’s22 method needs to be 
calibrated every time before a BP prediction to find the optimal fit on the wrist for the watch, while Schlesinger 
et al.’s27 model needs to be calibrated once to find the offset value between the model and the true prediction. As 
blood pressure may not change drastically within minutes (at rest) and significant trends might be observed only 
over the course of a few months owing to lifestyle changes or the influence of  medication61, it becomes important 
to pay attention to questions such as: What is the frequency of re-calibration? Is the calibration approach prone 
to changes in other environmental factors? We believe that the calibration approaches reported in prior work 
risk over-fitting by memorizing patient-level local temporal characteristics, and that evaluation is incomplete 
given that they do not evaluate BP prediction over longer time scales.

To understand the influence of calibration, we evaluate the prediction performance under different calibration 
strategies. Naïve Calibration simply predicts a constant calibrated value for the entire record. The constant value 
is computed as the mean of the ground truth values of the first three windows of a record. Offset Calibration 
uses our reference network, but adds an offset to the predicted value. The offset is computed in the calibration 
step as the difference between the predicted and ground truth BP of the test record’s first window. We found 
the Naïve Calibration to perform very well (Table 4), with a standard deviation of 8.61 mmHg, close to the 
AAMI standard. However, predicting a constant BP value for a patient is clearly incorrect. This inconsistency 
underscores problems with the evaluation methodology. Since typical records in MIMIC have short time intervals 
(average length = 6 minutes) compared to the time scales at which BP changes, predicting a constant value 
gives deceivingly good accuracy. An appropriate evaluation of calibration methods should consider time scales 
spanning the intended re-calibration duration. For example, if re-calibration is planned every six months, the 
method should be evaluated with patients tracked over at least a six month time period. To demonstrate that 
calibration systems can quickly deteriorate over time, we analyzed the performance of Offset Calibration as the 

Table 3.  Performance of the reference network on different SBP ranges on the MIMIC dataset. Constraining 
the data range can result in significant (but artificial) accuracy improvements.

SBP Range (mmHg) Bias (mmHg) SD (mmHg)

65–200 −3.45 15.8

75–165 −4.59 14.0

75–150 −4.42 12.4
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time from the calibration window increases. Although the method performs well for the first few days, the error 
rates increase dramatically after that (Figure 5A).

Unrealistic preprocessing or filtering
The MIMIC dataset comprises ICU-patients data, with artifacts due to patient movement, sensor degradation, 
transmission errors from bedside monitors, and human errors in post-processing data alignment. The impact 
of these artifacts is visible in both the PPG and ABP waveforms as missing data, noisy data, and sudden changes 
in amplitude and frequency (Figure 6). To clean the signal,  researchers27,29 have used band-pass filters to remove 
noise in the high frequency ( ≥ 16 Hz) and low frequency ( ≤0.5 Hz) ranges, followed by auto-correlation to filter 
signals that are not strongly correlated with themselves. The auto-correlation step removes samples with uneven 
amplitude and/or frequency. After cleaning the MIMIC dataset (Figure 1D), Schlesinger et al.27 used less than 
5% of the total data for training their neural network, while Hill et al.29 and Slapnicar et al.34 used less than 10% 
of the total MIMIC data. This suggests that “clean” data is rare. Although filtering datasets to remove some noise 
is often an essential step to train a machine learning  model56, excessive filtering of data can result in overfitting. 
Models trained on such clean data might achieve high performance on a clean test set; however, they might fail 
in practice, as it is difficult to obtain such clean signals in a real-world scenario.

To understand the impact of filtering on a dataset, we measure the performance of our reference network at 
different auto-correlation thresholds. Figure 5(B) plots the performance of our reference network in predicting SBP 

Table 4.  Performance of different calibration-methods on the MIMIC dataset. The incorrect Naïve calibration 
methods perform very well, underscoring problems with the evaluation methodology.

Method Bias (mmHg) SD (mmHg)

Naïve calibration 0.79 8.61

Offset calibration 0.38 9.82

No calibration 0.28 10.9
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Figure 5.  (A) The offset calibration method’s performance falls off quickly after the first few days. (B) 
Performance of our reference network with different auto-correlation thresholds on the MIMIC dataset.
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and the percentage of filtered data for each auto-correlation threshold. The performance of the network improves 
by 29.7% and the dataset size decreases by 63%, as we increase the auto-correlation threshold from 0 to 0.8.

Our proposed principled approach
We propose and utilize two tools—based on multi-valued mappings and on mutual information (Appendix B)—
to estimate if the input signal is a good predictor of the output. Using our proposed tools we performed a 
principled analysis to study the relationship between PPG and BP. For comparison, we also used our tools on 
heart rate (HR) and reflected wave arrival time (RWAT) estimation for which it is known that the PPG signal 
is a strong predictor.

Checking for Multi-Valued Mappings: We use Algorithm 1 to find multi-valued mappings corresponding 
to data samples that are close in the input space but distant in the output space. As discussed in Section B.1, to 
compute the distance between two PPG inputs, we first align them using cross-correlation, followed by comput-
ing their Euclidean distance. We divide the dataset records into non-overlapping two-second windows and treat 
them as individual inputs. We set an input distance threshold of 1.0, which corresponds to a per-time sample 
threshold of 4e − 3 (each 2s PPG window had 250 samples). For the output, we set thresholds of 8 mmHg, 8 bps, 
and 0.02s for the BP, HR and RWAT prediction tasks, respectively. We found very few multi-valued mappings for 
the HR and RWAT tasks, while a large number of mappings for the SBP task (Table 5). In the MIMIC dataset, for 
33.2% of the 2-second windows, we found another window for the same patient who was close in the input PPG 
space but had a significantly different SBP output. When limiting the search to different patients, for 15.0% of the 
windows we could still find such matches. This implies that the task of predicting BP from PPG is ill-conditioned. 
Figure 7 shows examples of such multi-valued mappings, with highly similar input PPG waveforms but signifi-
cantly different output arterial BP waveforms. In comparison, for the HR and RWAT tasks, the number of such 
matches is much smaller at 0.02% and 0.08% intra-patient, respectively, suggesting much better conditioning.

In the process of filtering multi-valued mappings, it is essential to consider the specificity of sensors and 
the methodologies employed in preprocessing the input data. Our analysis focuses on intra-patient and inter-
patient multi-valued mappings within specific datasets, namely MIMIC and AURORA, rather than across 
different datasets. This approach ensures that our findings are not confounded by variations in sensor quality or 
the nuances of measurement techniques. Additionally, it enables us to apply preprocessing steps that preserve 
amplitude information.

Evaluating Mutual Information: To estimate mutual information (MI) between the PPG signal and the tar-
get output (BP/HR/RWAT), we use the K-nearest neighbours based approach proposed by Kraskov et al.62. We 
leverage dimensionality reduction to make MI estimation tractable, using handcrafted and auto-encoder learned 
feature representations. We report the mutual information of the input features and target variable, as well as the 
entropy of the target variable. Note that the target variable’s entropy is the maximum achievable mutual informa-
tion. Thus, the ratio of MI and target variable entropy represents the target information fraction encoded by the 
input, which we call Info-Fraction. We found Info-Fraction to be a more intuitive measure than the absolute MI 
values, and use it to compare the predictive power of PPG across the different tasks.

Handcrafted Features: As suggested by  Takazawa63 and Elgendi et al.64, we calculate handcrafted features (see 
Table 6) from the PPG waveform (Figure 8). Due to the absence of a time-aligned ECG waveform in the MIMIC 
dataset, we extracted the relevant handcrafted features only from the PPG waveform. Table 7 presents the MI of these 
individual features with respect to the BP prediction task for both the MIMIC and Aurora-BP datasets, along with 
the MI when all these features are combined and regarded as a single multi-dimensional input. We found that even 
the combined features set encode a small fraction of the total target entropy. For example, in the MIMIC dataset, 
the combined features’ Info-Fraction is just 9.5%, while heart rate itself contributes an Info-Fraction of 4.1%. Similar 
observations hold true for the Aurora-BP dataset. This hints that the PPG signal does not have enough information 
to predict BP in this dataset, and moreover the prediction is highly dependent on the heart rate.

For the Aurora-BP dataset we have the demographic data (age, weight, height) of the subjects, as well as 
time-aligned PPG and ECG waveforms. This allows us to calculate additional features, e.g., radial Pulse Arrival 
Time (rPAT) and other derived  features60. Prior  work7 has used PAT to estimate blood pressure. Moreover, 
the Aurora-BP dataset has multiple readings for each subject in different positions (e.g., sitting, at rest, and 
supinated) which helps us add delta features reflecting the difference between features in the two conditions. 
Despite this, we found the entropy results for the Aurora-BP dataset to be similar to the MIMIC dataset, with 
the handcrafted features able to capture only 9.8% of the entropy of blood pressure (Table 8). On the other hand, 
for the HR and RWAT prediction tasks, the handcrafted features captured 87.7% and 64.6% entropy, respectively 
(ground truth for HR is derived from the ECG sensor data and RWAT from the tonometric sensor data). This 

Table 5.  Multi-valued mapping matches for the BP, HR and RWAT prediction tasks. For the BP task, there was 
a high match rate for both within the same patient records and across patients, suggesting an ill-conditioned 
problem. For the HR and RWAT tasks, the matches were much lower. Ground truth for RWAT is only available 
for the Aurora-BP dataset.

Task

MIMIC Aurora-BP

Intra-patient Inter-patient Intra-patient Inter-patient

SBP 33.2% 15.0% 13.9% 16.2%

HR 0.75% 2.10% 0.02% 0.89%

RWAT – – 0.08% 4.78%
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Figure 7.  Multi-valued mappings. Examples of PPG waveforms (PPG i  and PPG j ) that are very similar and 
have corresponding arterial blood pressure waveforms (ABP i  and ABP j ) that are quite different. This highlights 
the existence of similar features that map to different targets, which makes the task of blood pressure prediction 
via PPG pulse wave analysis ill-conditioned.

Table 6.  Descriptions of the handcrafted features used for the Mutual Information analyses.

Feature Description

Heart Rate (HR)
Measurement of the number of pulsations of the heart in a minute. Calculated as the inverse of median 
time between each heart beat. The PPG signal was used for MIMIC (because time alignment with the ECG 
signal was not precise), the ECG signal was used for Aurora-BP.

Heart Rate Variability (HRV) Measurement of the variation in time between each heart beat. Calculated as the mean of standard devia-
tions of normal-normal (NN) intervals (SDNN).

Quality
Measurement of the quality of the PPG signal. A heuristic based algorithm that takes the signal-to-noise 
ratio, artifacts, consistency between the pulses in a window into consideration and computes a normalized 
score between 0 and 1.

dp
dt

Measurement of the mean systolic rise times normalized with respect to the duration of each beat in the 
PPG signal.

rPAT Measurement of the delay between the R-peak in the ECG signal and systolic peak of the PPG signal. This 
can only be computed for Aurora-BP due to imprecise synchronization in MIMIC.

Inv. PAT 1/rPAT.

� Feature Measured as the difference between the calculated value and baseline value. A baseline value of each feature 
for all patients is computed in Aurora-BP (not available for MIMIC).

std.Feature Measures the fluctuation of a feature across a fixed time period.
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further strengthens our finding that the PPG signal even with additional information from the ECG waveform 
has limited information to predict BP.

Auto-encoder Features: As an alternative to handcrafted features, we train an auto-encoder on the raw PPG 
waveform to obtain a set of low dimensional features. We use a five-layer perceptron (MLP) auto-encoder with 
ReLU activation and a bottleneck layer of 20 neurons. The model was trained with the Adam optimizer (learning 
rate of 0.001) and a mean-squared error loss (with a stopping point when the loss saturated at <0.1). Training 
time on a single NVIDIA P100 was under an hour. Table 9 shows the MI of the combined bottleneck features 
with respect to the BP, HR and RWAT prediction tasks. Although the auto-encoder features are more compre-
hensive and have higher MI compared to the hand-crafted features, the Info-Fraction for BP prediction (12.9% 
for MIMIC and 8.7% for Aurora-BP) is still much lower compared to that for HR (92.2% for MIMIC and 93.1% 
for Aurora-BP) and RWAT (70.1% for Aurora-BP) prediction tasks.

There are two possible implications of these findings. First, it may suggest that PPG signals lacks adequate 
information for accurate BP prediction. Alternativelty, it could imply a limitation in the current sensor technol-
ogy, making sensors susceptible to confounding factors like external noise and environmental variations, thereby 
hindering the accuracy of BP prediction.

Conclusion
Our results reveal that BP prediction via pulse wave analysis of the PPG signal is still an unsolved task and far 
from the acceptable AAMI and BHS standards. By performing a systematic review and accompanying experi-
ments we found several issues being overlooked in the prior work that have led to seemingly over-optimistic 
results. These pitfalls can be categorized into data splits that leak information from test samples into the train-
ing set, heavy constraints on the task that remove challenging samples and reduce the range of target values 
substantially, calibration methods that seem to be practically problematic, and unreasonable preprocessing that 
filters the data to an unrealistic extent such that any noise is unacceptable. These pitfalls simplify the machine 
learning task, creating a deceptive perception of ease in model training, which results in inflated performance. 
Ultimately, this translates to models that overfit the training data, hindering their ability to generalize effectively 
and handle real-world data variations.

Time

Photoplethysmography

Electrocardiography

y 2
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Figure 8.  A visual description of the hand-crafted features calculated from the PPG and ECG waveforms. The 
systolic ramp time ( dpdt  ) is defined as y2−y1

t2−t1
.

Table 7.  Mutual Information of PPG optical features in the BP prediction task. Even all features combined 
have a small Info-Fraction, and most of that is captured by the heart rate feature alone.

Optical Features

Mutual Information 
(bits)

MIMIC Aurora-BP

HR 0.120 0.103

HRV 0.070 0.054

Quality 0.070 0.112
dp
dt

0.013 0.064

Combined 0.280 0.240

Entropy 2.930 3.680

Info-fraction (Combined) 9.5% 6.5%

Info-fraction (HR) 4.1% 2.8%
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While research on non-invasive approaches to estimate health vitals such as heart rate and blood oxygen 
saturation has made tremendous progress, enabling these technologies to become ubiquitous in the last decade, 
progress in non-invasive cuffless BP estimation has been slow despite witnessing similar research interest. This 
has prompted us to question whether the problem itself is ill-conditioned and if the PPG signal contains enough 
information to predict BP in the first place. In order to answer these questions, we have proposed a set of tools 
based on multi-valued mapping and mutual information to check if an input signal is a good predictor of the 
desired output. The multi-valued mapping checker allows us to find samples close in input space but far in output 
space. We found many such samples in both the MIMIC and Aurora-BP datasets. Searching for multi-valued 
mappings was trivial once appropriate distance metric and thresholds were defined, qualitative and quantitative 
results show that almost identical PPG waveforms can have very different BP waveforms. Next, we looked at 
the entropy of the features by computing mutual information. MI was extremely low for both hand-crafted and 
learned auto-encoder features. In comparison, heart rate and RWAT prediction tasks from PPG PWA have much 
lower multi-valued mapping factors and much higher mutual information indicating that the task is relatively 
well conditioned compared to PPG PWA to BP. We believe that these tools are relevant for feasibilty analysis in 
similar tasks involving wearable data, such as predicting stress levels from  PPG65–67 and estimating blood glucose 
levels from  PPG68–70.

Our study does not aim to prove that blood pressure estimation from PPG PWA is impossible; however, 
it indicates that the task is very challenging, and evaluating performance fairly is non-trivial. To navigate this 
complexity, we present a set of tools that future research can leverage to avoid the pitfalls identified here. We 
hope our work can serve as a milestone and stimulate further discussion and exploration in the following areas: 
(1) Data Diversity: Collecting comprehensive datasets that represent subjects from diverse demographics and 

Table 8.  Mutual Information of patient demographic data, PPG optical features and features derived using 
ECG, for the Aurora-BP  dataset60. While all features combined have an Info-Fraction of just 9.8% for the SBP 
prediction task, they encode much more information for the HR prediction (87.7%) and RWAT prediction 
(64.6%) tasks.

Feature

Mutual Information

SBP (bits) HR (bits) RWAT (bits)

Age 0.026 0.015 0.000

Weight 0.024 0.024 0.000

Height 0.007 0.000 0.000

HR 0.130 2.000 0.658

std HR 0.009 1.230 0.509

rPAT 0.200 0.220 0.116

HRV 0.170 0.295 0.131

Inv. PAT 0.070 0.132 0.065

Quality 0.100 0.080 0.000
dp
dt

0.016 0.476 0.584

std dpdt 0.009 0.232 0.252

� rPAT 0.160 0.165 0.074

� Inv. PAT 0.060 0.072 0.063

�
dp
dt

0.014 0.131 0.139

� HRV 0.170 0.130 0.016

� HR 0.025 0.242 0.234

� Quality 0.070 0.060 0.001

Combined 0.364 3.240 1.650

Entropy 3.680 3.650 2.540

Info-Fraction (Combined) 9.89% 88.8% 65.0%

Table 9.  Mutual information of auto-encoder features. The same trend of Table 8 holds. While the SBP task 
has low Info-Fraction, the features encode much more information for the HR and RWAT tasks. Ground truth 
for RWAT is only available for the Aurora-BP  dataset60.

Task

MIMIC Aurora-BP

MI Entropy Info-Fraction MI Entropy Info-Fraction

SBP 0.38 2.93 12.9% 0.32 3.68 8.70%

HR 2.60 2.82 92.2% 3.40 3.65 93.1%

RWAT – – – 1.78 2.54 70.1%
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cardiovascular physiologies. (2) Multiple modalities: Exploring the integration of PPG with other physiologi-
cal signals holds immense potential for enhancing prediction accuracy and providing a more holistic view of 
cardiovascular health. (3) Improved Sensors: Advancements in sensor technology are crucial to capture higher-
fidelity PPG data with minimal external noise and environmental variables. We believe that focusing on these 
critical areas will lead to generalizable and scalable solutions, empowering a future where everyone can benefit 
from the accessibility and convenience of non-invasive cuffless BP estimation.

Data availibility
All the data used in this work is publicly available. The  MIMIC71(https:// archi ve. physi onet. org/ physi obank/ 
datab ase/ mimic 2wdb/) and Aurora-BP60 (https:// github. com/ micro soft/ auror abp- sample- data) datasets can be 
accessed by researchers after completing the necessary steps stated by the creators of those datasets.

A Related work
The gold-standard for blood pressure measurement, used in Intensive Care Units and Operating Theatres, 
requires an invasive procedure that involves inserting a cannula needle into an artery. The cannula needle is 
connected to a transducer that converts the pulse signal to the arterial pressure waveform, providing continuous 
pulse-level BP measurements. Such invasive measurement is not feasible outside of a hospital setting, therefore 
two alternative cuff-based non-invasive procedures—auscultatory and oscillometry methods—are widely used 72. 
However, these methods do not provide continuous measurement, Hence researchers 7,73,74 have been actively 
working on developing novel methods to accurately estimate blood pressure in a non-invasive continuous man-
ner. A majority of the proposed methods involve calculating the Pulse Transit Time (PTT) which is inversely 
correlated to BP. PTT is defined as the time taken by a pulse to travel between two arterial sites—one measured 
using PPG and the other captured from a different sensor. E.g., Ding et al.75 captured ECG, He et al. 73 used Bal-
listocardiogram from the ear, Holz and Wang 74 collected accelerometer signals from the head, and Wang et al. 7 
captured accelerometer signals using a smartphone pressed to the chest.
Considering the ease and accessibility of accurately measuring heart rate and heart rate variability via PPG 
captured from a smartphone or wearable, a natural extension is to attempt to calculate blood pressure solely 
by analyzing the PPG pulse wave. Recent works 22,27,29,48,50 have explored and published promising results for 
the BP prediction task from PPG pulse wave analysis. These proposed methods involve building data-driven 
regression models to learn meaningful features by leveraging the availability of large PPG-BP labelled datasets 
(MIMIC 52). For example, Schlesinger et al. 27 predicted BP using Convolution Neural Networks (CNN) trained 
on a frequency domain representation of the PPG signal and used siamese logic to calibrate BP predictions at 
run-time, Tazarv and Levorato 50 used a Long Short-Term Memory (LSTM) network with the PPG waveform as 
input, and Slapnicar et al. 34 proposed an ensemble network of 1-D CNNs and LSTMs on the raw and first two 
derivatives of the PPG signal. Some recent works 21,29 have proposed an extension to prior work by predicting 
the full Arterial Blood Pressure (ABP) waveform from the PPG signal using U-Net based architectures.

B Methods
We propose two tools—based on multi-valued mappings and on mutual information—to estimate if the input 
to a model is a good predictor of the output.

B.1 Multi-valued mapping check
If the input sensor signal (x) is a good predictor of an output health labels (y), it means there exists a function f, 
such that y = f (x) . Moreover, the function f should be well-conditioned, i.e., small changes in x should not lead 
to large changes in y. This is important to ensure that small amounts of noise in the sensor measurement (which 
are bound to happen in a real-world setting) do not lead to significant errors in the output. To test whether a task 
is well-conditioned, we propose searching for multi-valued mappings using Algorithm 1. Our multi-valued map-
ping algorithm searches for samples that are close in the input space but distant in the output space. If the algo-
rithm is able to find such mappings, it means that the function f either does not exist, or is at best ill-conditioned.

Algorithm 1.  Multi-valued Mapping Search

https://archive.physionet.org/physiobank/database/mimic2wdb/
https://archive.physionet.org/physiobank/database/mimic2wdb/
https://github.com/microsoft/aurorabp-sample-data
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Algorithm 1 has two key components: a distance function for comparing the input samples and an optimal 
threshold value for filtering the multi-valued mappings.

Distance Function: Searching for multi-valued mappings in a dataset requires a metric to quantify the dis-
tance between the input samples. However, choosing the right distance function is not always obvious, and one 
needs to be careful about the implicit assumptions in any given metric. For example, cross-correlation, dynamic 
time warping (DTW) 76, and Euclidean distance are ways to measure the distance between two time-series/
waveforms, and each has specific characteristics—cross-correlation is phase invariant, DTW is scale invariant 
in the time dimension, and Euclidean distance is translation invariant. For cross-correlation, a sliding window 
dot-product of the two input data series is computed to find the point where the similarity is maximized; DTW 
computes an optimal match by reducing the minimum-edit distance between the two series; Euclidean distance 
measures the similarity between the two data series using the L2 distance.

Ideally, the distance function should align well with the task requirements. Among the three distance func-
tions, DTW makes the similarity metric invariant with respect to the time scale. However, it is known that BP 
has a direct dependency on heart rate, which in turn is determined by the periodicity of the PPG waves. Thus, 
the time scale invariance property of DTW will result in information loss for this task, making it a bad choice 
as a distance function. The Euclidean distance used in isolation is not a good choice either, as even the same 
PPG signals slightly shifted in time can result in a high Euclidean distance value. Since the relationship between 
PPG and BP should not change with small shifts of the PPG signal forward or backward in time, such a distance 
metric is not suitable. Therefore, cross-correlation is ideal to create an appropriate distance metric. Although the 
cross-correlation based distance metric worked well in our experiments, we found that aligning PPG signals via 
cross-correlation followed by computing the Euclidean distance between the aligned signals appeared logical. 
We used this distance measure for all our experiments.

Optimal Threshold: After choosing the appropriate distance function, we need to identify an optimal distance 
threshold, below which two signals can be considered “equal”. However, it is not straightforward to find such a 
threshold. If the threshold is very generous (i.e., high), we will end up selecting distant input signals as equal, 
and obtain misleading multi-valued mappings. On the other hand, if the threshold is too strict (i.e., low), we 
may not find any multi-valued mappings even for ill-conditioned functions, as the chances of two input signals 
being identical, especially in the presence of noise, are very small. To identify the optimal threshold for filtering 
multi-valued mappings, we calculate the Euclidean distance between two consecutive aligned PPG waves, each 
2 seconds in duration. This interval was chosen because it represents an ideal time frame in which the signal 
remains consistent. Ideally, the difference between 2 consecutive PPG waves should account for an irreducible 
error, and this can be used as a threshold for filtering multi-valued mappings. Figure 9 illustrates the results of 
this analysis, which indicates that a majority of the PPG waves exhibit a Euclidean distance of ≤ 1, which led us 
to choose 1.0 as the threshold for our experiment.

Note that our multi-valued mapping check is a one-way method, i.e., if we are able to find multi-valued map-
pings, it implies an ill-conditioned f; however not finding multi-valued mappings does not guarantee existence 
of a well-defined f. This is because Algorithm 1 may fail to find signals close in the input space due to sparsity of 
the dataset. The mutual information check discussed next provides a complimentary method.

B.2 Mutual information check
Mutual Information (MI) is an information theoretical measure of the dependence between two random vari-
ables X and Y, defined as:

where H is the Shannon entropy function ( H(X) = −
∑

i p(xi)log(p(xi)) . For continuous analog data, it is 
computed via limiting density of discrete points (LDDP)77. The marginal entropies H(X) and H(Y) represent the 

(1)
I(X;Y) = H(X)−H(X|Y)

= H(Y)−H(Y |X),

Figure 9.  The distribution of Euclidean Distances between pairs of aligned consecutive PPG waves.
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amount of information needed to describe the outcome of the random variable. This is same as the uncertainty 
of the random variable. H(X|Y) and H(Y |X) are conditional entropies, and denote the amount of information 
needed to describe the outcome of one random variable when the value of the other variable is known. This 
can also be thought of as the amount of uncertainty left in one random variable when the other is known. The 
mutual information I can be then interpreted as the amount of information (or reduction in uncertainty) that 
knowing one variable provides about the other. For example, I(X; Y) is zero if X and Y are independent, while it 
is maximum when X is a deterministic function of Y or vice-versa.

Mutual information can be an effective measure in our case to evaluate whether the input signal (x) can 
be a good predictor of the output health label (y). However, since the computation of MI relies on estimation 
of probability density functions of the random variables, it is non-trivial to robustly estimate the MI for high 
dimensional data such as the time series PPG data. To overcome this curse of dimensionality, we recommend 
the following dimensionality reduction approaches before computing the MI.

Auto-Encoder. Since MI is invariant under smooth invertible transformations of the variables, we propose 
using an auto-encoder to aggressively reduce the input space dimensionality. We train an auto-encoder with the 
least number of bottleneck features needed to achieve a target mean-squared reconstruction loss of 0.1 on the 
normalized dataset. For the MIMIC and Aurora-BP dataset, we achieved this target with a bottleneck size of 20, 
at which the MI estimation worked robustly.

Hand-Crafted Features. As an alternate solution to using an auto-encoder, we can use hand-crafted features 
extracted from the input signal based on prior literature 63,64 and use these features for MI estimation. For exam-
ple, in the task of BP prediction from PPG signal, common features include normalized systolic slope, heart rate, 
heart rate variability, etc. The MI estimation process helps us understand the importance of each of these features 
both collectively and independently. Note that in the case of hand-crafted features, there is always the concern 
of completeness (i.e., if the features extracted enough information from the input needed for the task), thus we 
recommend the auto-encoder approach whenever possible.

C Analysis details
C.1 Datasets
Our work builds on two datasets, the properties of which are critical to understand the results of our work.

MIMIC II: The MIMIC II dataset contains records of continuous high-resolution physiological waveforms 
of the patients in the ICU, such as ABP, PPG, and ECG sampled at 125Hz. The dataset consists of 67,830 records 
of varying duration from 30,000 patients 71. For the purpose of our study, we perform our analysis on a pre-
processed subset of the MIMIC II dataset, consisting of 12,000 records from 942  patients52. This subset is par-
ticularly useful for our analysis as it includes a sufficient number of patients for training and testing, compliant 
with AAMI standards, and has been commonly utilized in previous research(Table 1).

Aurora-BP: The Aurora-BP dataset 60 consists of 24,650 records from 483 subjects. Each subject has multiple 
records of varying duration, which were collected at rest or while performing activities such as exercise and 
brisk walk. The records are collected from multiple sensors/devices including optical PPG, EKG, tonometer, 
accelerometer, and cuff-based Blood Pressure.

C.2 Performance standards
To contextualize the performance of SBP (Systolic BP) prediction task, two benchmarks have been widely used: 
AAMI and BHS standards. The criteria of the AAMI (Association for the Advancement of Medical Instrumen-
tation)  standards53 are that the test set should comprise of at least 85 subjects, with at least 10% of them having 
an SBP above 180 mmHg and at least 10% having an SBP under 100 mmHg. For a test device to be compliant 
with the AAMI standards, the SBP prediction must have a bias under 5 mmHg and error standard deviation 
(SD) under 8 mmHg on the test set. The BHS (British Hypertension Society) 54 standards criteria states that the 
test set should consist of at least 85 subjects and that the cohort should be representative of the target audience 
of the device. The performance of the test device is divided into grades (Table 10). Additionally, the test data 
should cover the overall pressure range, specifically in these three ranges: ≤ 130, 130–160, and ≥ 160 mmHg.

C.3 Other considerations
Dataset size: To understand the effect of data size on MI, and verify whether our dataset had enough samples 
to enable robust MI estimation, we conducted the following experiment. We took a randomly selected slice 
of the data (ranging from 0.1 to 100% data) and computed the combined MI over 20 runs (this technique is 
known as bootstrapping). We performed this analysis for both the MIMIC and Aurora-BP datasets. As shown 
in Figures 10(A) and (B), although the estimates at smaller dataset sizes resulted in high variation, the variation 
bounds are very tight at higher sizes. This imparts confidence that our MI estimates over the full datasets are 
robust. Interestingly, we also found that using a smaller dataset can result in higher estimates of the MI values. 

Table 10.  Grading scale of test devices as per British Hypertension Society (BHS).

Grade

Cumulative % of data below SBP error 
threshold

≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg

A 60% 85% 95%

B 50% 75% 90%

C 40% 65% 85%
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This may be explained by the fact that fewer multi-valued mappings might be observed in a smaller sample. Thus, 
having a small dataset might lead to an over optimistic perception of the relationship between input and output.

Participant’s Demography: Apart from data size, we found that even demographic factors, such as age, 
impacted mutual information. Figure 10(C) shows the variation in combined MI with respect to age for the 
Aurora-BP dataset. In particular, we found that in the age group of 21-29 and 60-85 years, heart rate and weight 
were the most important features, which was not the case with the other age groups.
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