
1

Abstract— In recent times, many protocols have been proposed to
provide security for various information and communication systems.
Such protocols must be tested for their functional correctness before
they are used in practice. Application of formal methods for
verification of security protocols would enhance their reliability
thereby, increasing the usability of systems that employ them. Thus,
formal verification of security protocols has become a key issue in
computer and communications security. In this paper we present,
analyze and compare some prevalent approaches towards
verification of secure systems. We follow the notion of - same goal
through different approaches - as we formally analyze the Needham
Schroeder Public Key protocol for Lowe’s attack using each of our
presented approaches.

I. INTRODUCTION
Security protocols and algorithms are often used to ensure

secure communication in a hostile environment. Today, the
need of security and privacy in active information and
communication domains such as e-commerce; mobile
technologies and the internet has necessitated the use of
security protocols. But the underlying security protocols used
in these applications are vulnerable to a variety of attacks, such
as message replay, parallel session, data interception and/or
manipulation, repudiation and impersonation. Therefore before
trusting security protocols, it becomes imperative for a systems
designer to have some degree of assurance that these protocols
fulfill their intended objectives.

Formal verification is the use of mathematical techniques to
ensure that a design conforms to some precisely expressed
notion of functional correctness. Traditionally, security
protocols had been designed and analyzed heuristically. The
absence of formal methods for verification could lead to
security errors remaining undetected. Formal verification
techniques, on the other hand, provide a systematic way of
discovering protocol flaws. They can be applied to designs
described at many different levels of abstraction, ranging from
the gate level, to RTL implementations, and in some cases even
to transaction level models described in standardized
programming languages [1]. Besides the conformity of
correctness, formal methods, when used in the design phases of
a system’s development often result in more accurate and
lower cost systems.

Unfortunately, these protocol verification methodologies
are very complex and cannot be easily implemented by
protocol engineers [19]. There is also a deep sense of distrust in
the academic community about the different verification

techniques and their competence in determining prospective
design and implementation flaws in complex systems [20, 21].
Therefore through this paper, we intend to present, compare
and analyze a few most prevalent approaches towards formal
verification of security protocols.

To achieve our objective we introduce four well known
verification approaches – the sequential programming
approach; the logic programming approach; the strand spaces
approach and the belief based approach – falling under the
broader domains of model checking and logical inference.
Each of the above mention methodologies are applied to
formally verify the Needham Schroeder Public Key protocol
[3] for Lowe’s attack[4]. In the process of doing so, we
compare these approaches for their specification ease,
competence in determining complex security flaws; and
computational costs. We also make an explicit mention of the
advantages and limitations of using these approaches in
verifying similar systems.

In section II of the paper we present our literature study by
giving a brief mention of what model checking and logical
inference approaches are. Section III, introduces the Needham
Schroeder Public Key protocol (NSPK) and the classical
Lowe’s attack on it. In the section IV we elaborate on our
presented verification approaches by proving the validity of the
Lowe’s attack on the NSPK protocol using each approach
explicitly. Section V presents a detailed comparison between
the approaches explained in section IV. Section VI, gives a
brief mention of our intention of future work. Finally, we
conclude the paper in section VII, followed by references in
section VIII.

II. LITERATURE SURVEY
Formal verification aims at providing a rigid and thorough

means of evaluating the correctness of a security protocol so
that even subtle defects can be uncovered. These methods
include mathematical analysis dependant on logical analysis or
process algebras. Though there are numerous approaches and
formal methods that could be employed for verification of a
security protocol. These approaches can be broadly classified
into two domains namely, model checking and logical
inferences.

The first approach is model checking [2], which consists of
a systematically exhaustive exploration of the mathematical
model. Usually this consists of exploring all states and
transitions in the model, by using smart and domain-specific
abstraction techniques to consider whole groups of states in a

Approaches to Formal Verification of Security Protocols

Suvansh Lal, Mohit Jain, Vikrant Chaplot

Dhirubhai Ambani Institute of Information and Communication Technology
{suvansh_lal, miohit_jain, vikrant_chaplot}@daiict.ac.in

2

single operation and reduce computing time. Model Checking,
one of many formal verification methods, is an attractive and
increasingly appealing alternative to simulation and testing to
validate and verify systems [2]. Given a system model and
desired system properties, the Model Checker explores the full
state space of the system model to check whether the given
system properties are satisfied by the model. In this paper, we
present the logic programming approach [5, 6, 10] under the
model checker domain, with smodels [25] and lparse [12] as a
model finder and grounded program generator respectively.
Another suggested includes the sequential programming
approach [15] with FDR [27] as its model checker.

 The second approach is logical inference. It consists of
using a formal version of mathematical reasoning about the
system. This approach is usually only partially automated and
is driven by the user's understanding of the system to validate.
The suggested approaches under this domain are BAN Logic
[22, 23] and the Strand Spaces approach[24].

III. NEEDHAM SCHRODER PUBLIC KEY PROTOCOL
 Proposed by Roger Needham and Michael Schroder,
NSPK protocol [3] claims to provide mutual authentication
between two agents, along with establishing a session between
the communicating parties, in a public key cryptography based
system. For the description of the protocol we would assume
that A and B are two honest agents and S is a trusted server.
The notation used is - KPX and KSX are the public and private
keys of agent X.

Protocol Run:
1) A S: A, B (A requests B's public key from S)

2) S A: {KPB, B}Kss (S responds. B's identity is send along
with KPB for confirmation)

3) A B: {Na, A}KPB (A sends a fresh nonce Na to B)

4) B S: B, A (B requests S for A’s public key)

5) S B: {KPA, A}Kss (S sends the public key of A to B)

6) B A: {Na, Nb}KPA (B generates a fresh nonce Nb and
sends it back to A, along with A’s nonce Na)

7) A {Nb}KPB (A confirms Nb to B)

At the end of the protocol, A and B know each other's
identities, and know both Na and Nb. These nonces are not
known to eavesdroppers.

Attack on the NSPK protocol: Gavin Lowe proposed an
attack on NSPK using CSP modeling technique and FDR
model checking tool [4]. Lowe claimed that the protocol is
vulnerable to Man in the Middle Attack, wherein an adversary
I, who is responding to a protocol run initiated by A, can
falsely authenticate itself to an agent B as A, by replaying A’s
message to B. Thus, B is fooled to belief that a session is
established between A and B. In the explanation of the attack

and its analysis, we will ignore the messages transmitted to
and from a trusted server S (message 1, 2, 4 and 5) which
remain unchanged in an attack run.

Lowe’s Attack on NSPK:
1.1) A I: {Na, A}KPI (A sends a fresh nonce Na to I)

2.1) I(A) B: {Na, A}KPB (In a parallel run of the protocol, I
masquerading as A, relays the message received from A
after encrypting it under B’s public key.)

2.2) B I(A): {Na, Nb}KPA (B responds to I’s message)

1.2) I A: {Na, Nb}KPA (I relays B’s message to A)

1.3) A I: {Nb}KPI (A returns Nb to complete protocol run
with I)

2.3) I(A) B: {Nb}KPB (I masquerade A and forwards Nb
encrypted under B’s public key)

In the next section, different verification approaches are
applied to formally analyze NSPK protocol for a security
violation that corresponds to Lowe’s attack and produce
results similar to those stated above.

IV. APPROACHES TO FORMAL VERIFICATION

A. The Strand Spaces Approach
Strand Spaces proposed by Fábrega et al in [24] is a
mathematical technique for formal verification of security
protocols. A strand represents the chronological sequence of
the messages transferred during a protocol run. These
messages can be sent or received by either legitimate parties
or the adversary. The collection of strands of all the parties
participating in the protocol run is known as a Strand Space.

 This technique provides a distinguished approach for
protocol verification with intelligent and reliable proofs even
without automated support. It works with the explicit model
of possible behavior of system penetrator and also provides
clear semantics about data items like nonce and session keys.
It also provides proofs of notions of correctness of both
secrecy and authentication. It also provides the detailed insight
into why certain assumptions are required to prove the
correctness.

TABLE 1
TERMINOLOGY USED

A
Message Space. It has two disjoint subsets:

• T: set of atomic text messages
• K: set of cryptographic keys

<σ,a>
Signed Term: + represent sent message, - represents received
message.

(tr, Σ) Trace mapping of a participant. It represents the set of
messages sent or received by a participant.

Subterm relation. e.g. m {m}K but K {m}K iff

K m

3

n1⇒ n2 Node n1 is the immediate causal predecessor of n2

n1→ n2 There is a causal link between the nodes n1 and n2

Proof of Needham – Schroeder Public Key Protocol

PROTOCOL AIM:
This protocol intends that after the successful run of the
protocol, the communicating parties share access to Na and Nb
and no other party should have access to these values.

DEFINITION: Let ∑ be the NSPK strand space. It is the union
of following strands:

• Initiator Strand: The Initiator Strand has the trace Init
[A, B, Na, Nb].

• Responder Strand: The Responder Strand is
complementary to the Initiator strand and has the
trace Resp [A, B, Na, Nb].

• Penetrator Strand P.

ASSUMPTIONS
• Each participant has the knowledge of other

participant’s public key.
• Each participant has different public key. According

to this condition if KA = KB ⇒ A = B and vice versa.
• Nonce values {Na, Nb }≠ {A, B}. This implies that

name of any participant is not used as nonce value.

PROOF
Figure 1 represents the ideal NSPK strand space. Here ‘i’
represents the initiator strand while ‘s’ represents the
responder strand.

Figure 1

PROPOSITION 1: Responder’s Guarantee
Given

• ∑ is the NSPK strand space and C is a bundle that
has the responder strand s with trace Resp[A, B, Na,
Nb];

• KA
-1 ∉ KP where KP represents the set of keys know to

penetrator P;
• Na ≠ Nb and Nb originates uniquely in ∑.

Then there exists an initiator strand ‘i’ in bundle C with trace
Init [A, B, Na, Nb].

Figure 2

Figure 2 represents the legitimate responder’s strand.
To prove the proposition we will take help of certain lemmas.
We rename node <s, 2> where responder sends message {Na,
Nb}KA as a0 and its term as t0. We also refer node <s, 3> where
responder receive the message {Nb}KB as a3 and its term as t3.

LEMMA 1.1: Nb originates at t0.

Proof: By observing Figure 2 we find that Nb a0 which is
a positive node. Now the only node preceding a0 on responder

strand is <s, 1>. We just have to check that Nb term<s, 1>,
i.e. Nb ≠ Na and Nb ≠ A. Both of these follow from our
hypothesis. Hence we can say that Nb originates at a0.
Next lemma checks that whether the step 3 of the protocol is
taken by the legitimate party or the penetrator.

LEMMA 1.2: Given set S = { n є C : Nb term(n) ^ t0
term(n)}. Set S has a minimal node t2. The node t2 is positive
and regular.
Proof: It can be seen that a3 є S. Hence S is non empty and
contains a minimal node a2. Since a2 is minimal node its sign is
positive. We will now check that whether a2 lies on a
penetrator strand or not. We will examine the possible types of
penetrator traces.
<+t> : If trace(p) is of this form than Nb = t. This implies that
Nb originates on this strand which contradicts the result of
Lemma 1.1
<-g>: This trace lacks any positive node and hence cannot be
minimal node.
<-g, +g, +g>: In this case positive nodes do not have minimal
occurrence.
<-g, -h, +gh>: In this case positive nodes do not have minimal
occurrence.
<+K0>: Here K0 є KP. But since from our assumption, text and
keys belong to disjoint sets this cannot be possible.
<- K0

-1, -{h}K0, +h>: If the positive node is minimal then t0

but t0 {h}K0. Hence K0 = KA. This contradicts our
assumption that KA

-1 ∉ KP
Therefore a2 does not lie on a penetrator strand but it must
belong to a regular strand.

LEMMA 1.3: A node a1 precedes a2 on the same regular
strand and term(a1) = {Na, Nb}KA.
Nb originates uniquely in ∑. Also a2 ≠ a0 which follows from
above proved lemma. Therefore there should be some node a1

4

preceding a2 such that Nb term (a1). Since node a2 is
minimal term (n1) = {Na, Nb}KA.

LEMMA 1.4: The regular strand i containing a1 and a2 is the
initiator strand and this strand has trace Init [A, B, Na, Nb].
With the weaker information proved in above lemmas we
cannot conclude that i has a trace of the form Init [A, B, Na,
Nb]. This is because the responder’s identity is not determined
by the term {Na, Nb}KA, which is what this agreement protocol
is all about. We can only conclude that strand t belonging to
user A has trace Init [A, X, Na, Nb] where X can be some party
with which A is communicating. This results corresponds to
the Lowe’s attack suggested in section III.

B. THE LOGIC PROGRAMMING APPROACH
In this section we use ALSP (Action Language for Security
Protocols[5, 6] as an efficient specification language to
formally analyze the NSPK protocol[3]. ALSP is an
executable language for representing protocols and checking
for security violations they are vulnerable to [6, 10].
Specification of a protocol in ALSP requires inculcation of
concepts of robotic planning[13]. Security protocols are
reframed as planning problems, where agents exchange
messages and are subject to attacks by intruders. The
specification of a protocol in ALSP is viewed as a plan to
achieve a goal and the attacks become plans, which achieve
goals that correspond to security violations.

 ALSP is based on LPSM(Logic Programming with
Stable Model Semantics) [7, 9]. Logic Programming[8]
enables one with declarative ease to specify the actions of the
different agents in a protocol. This includes both the
operational behavior of a protocol, along with the possible
security attacks of an intruder. All stable models[11] for the
solution set of logic programs in ALSP are minimal and
grounded in nature[9]. Minimalism allows one to determine
exactly what happened when a protocol specification was
executed. It ensures that all unwanted models are not a part of
our solution set. Groundedness, on the other hand ensures that
everything present in the solution set has a justification behind
its presence[5].

 A logic program is written as a set of Horn clauses
known as rules. We formalize and frame all actions in a
protocol specification as logic programming rules[6]. A rule
comprises of a head and a body, separated by a [:-]. The left
hand side head literals hold true if all the literals on the right
hand side body are true. A syntactically correct example of a
rule in logic programming would be:

q:- p, s.
Let P be the logic program with S being the solution set for P.
Then the above rule could be read as, if the literals s and p
belong to the solution set S then q must also belong to the
solution set S. Here the rule is a constraint on the solution set.

 To develop the protocol specification for NSPK,
initially a general description of the background and action

theories pertaining to the protocol is specified in ALSP. This
is followed by defining, the choice rules representing the
correct execution of the protocol and the actual specification
of the protocol dependant itself. Last but not the least; we
define a rule corresponding to the security property we want to
check. Then, the above specifications are merged and a
maximum execution time for the protocol run is determined.
Setting bounds on basic objects like nonces, devices, random
values, etc we use lparse[12] as a suitable front end to the
smodels[25] system to generate a grounded logic program
from our specification. Finally this grounded logic program is
executed in smodels to find stable models corresponding to
violations.

Development of Protocol Specification for Needham –
Schroeder Public Key Protocol:
 We start specifying the protocol by considering basic
sort predicates to characterize the basic components of NSPK.
We state clearly the background theory (initial state of the
protocol) which contains rules describing, how a message is
composed and decrypted by the agents. It also includes the
properties of keys shared and how information is attained by
agents participating in a protocol. A few basic sort predicates
used in our protocol specification are, nonce(N), agent(A)
time(T). The names of these predicates are intuitive and
represent properties and functions of these predicates. A
special sort predicate msg(M) is also defined, which means
that M is a valid message that may appear in a protocol run.
Then, we specify a few basic constructors that symbolize
cryptographic operations, concatenations and hashing of
messages as required by the protocol. Table 2, represents a
few classical constructs used in the protocol specification.

TABLE 2
CONSTRUCTS USED IN NSPK SPECIFICATION

encrypt(K, M)

Denotes an encryption of the message M using
symmetric key K.

concat(A, B)
 Denotes concatenation of messages A and B (A||B)

We also specify predicates that define the properties of
messages and keys that are used in the protocol. In addition to
this, definition of the ability of agents to construct, send,
receive and understand these messages is also an imminent
part of our protocol specification. As suggested in [6], the
predicate names in most part of our ALSP specification for
NSPK are fairly intuitive and represent the action or property
after which they are named. Table 3, gives a brief mention of
these predicates.

TABLE 3

PREDICATE NAMES AND THEIR FUNCTIONS

part(M,M1) Denotes M as a submessage of M1

verifier(V,A,B) Denotes V as a verifier shared between agents A
and B

knows(A,M,T)
 Denotes agent A knows message M at time T

synth(A,M,T) Denotes agent A synthesizes message M at time T

5

says(A,B,M,T)

Denotes agent A’s attempt of sending the
message M to agent B

gets(A,M,T) Denotes agent A’s receipt of message M at time T

 Having known all the constructs and predicates
required for our specification of NSPK. We initiate the
specification of the background theory, beginning with the
messages that can be used in the protocol. In ALSP it is
deemed sufficient to specify the valid messages, along with all
their sub messages for a protocol run [13,14]. This is an
important step which ensures that the ALSP specification is
admissible [6, 10]. NSPK being a three step protocol, we can
easily distinguish the three messages along with their sub
messages, transmitted at different stages of its execution. To
enhance the readability of our specification, we have avoided
using the sort predicates in the body clause of our rules. We
have also used the more prevalent notation(Table 1) for its
description henceforth. For example, xor(M1,M2) has been
simply written as M1 ⊕ M2 and concat(M1,M2) as M1||M2.

 The protocol specification should also represent the
ability of agents to modify and manipulate messages.

msg(encrypt(K, N, A)):-

 nonce(N), agent(A), publicKey(K, A).
msg(encrypt(K, N)):-

 nonce(N), publicKey(K, A).
msg(N||A)):-

 nonce(N), agent(A).

 To do this message parts are inductively defined
based on the protocol constructors. Most of this specification
is independent of the protocol itself and represents message
part defining rules, incorporated from [5].

part(M,M) :-msg(M).
part(M,M1||M2):- msg(M), msg(M1),msg(M2),part(M,M1).
part(M, M1||M2):- msg(M),msg(M1),msg(M2),part(M,M2).

 Modeling of knowledge is also an important aspect of
the protocol specification in ALSP. Intuitively, the knows
predicate is used for the purpose. This includes modeling the
abilities of agents to acquire information from messages they
have either received or transmitted. We also define that if an
agent possesses the knowledge of a message M2 then, he/she
would also possess the knowledge of a message M1 which is a
sub message of M2. This enables the agent to extract useful
message parts from concatenated or exored messages.

knows(A, M, T):- said(A, B, M, T)
knows(A, M, T):- got(A, M, T)
knows(A, M, T):- knows(A, M1, T), part(M, M1)
knows(A, M, T):- knows(A, M1||M2, T), part(M, M1)

 Similarly we specify the ability of an agent to
synthesize a message in a protocol run. The rules defining the
synthesis of messages ensure that an agent can construct a
message if and only if it can construct and thereby knows, all
the subparts of that message.

synth(A, M, T):-knows(A, M, T)
synth(A, prf(M1, M2), T):-knows(A, M1, T),
 knows(A, M1, T)

 Knowledge modeling, description of messages and
specification of the ability of agents to synthesize valid
messages in a protocol run concludes our background theory
for NSPK. Next, comes the specification of the action theory
for the protocol. Most of the specification in this part is
protocol independent and we refer to [6] for a detailed
description.

got(B, M, T+1):-gets(B, M, T)
said(A, B, M, T+1):-says(A, B, M, T)
got(B, M, T+1):-got(B, M, T)
said(A, B, M, T+1):-said(A, B, M, T)

 Next we define with the help of a choice rule the
receiving of messages by an agent the protocol. The rule
below suggests that if A sends the message msg(M) to B at
time T, then B may/may not receive it. This relieves us from
explicitly modeling the faulty transmission behavior or
message interception.

gets(B, M, T):-says(A, B, M, T)

 We use similar choice rules to describe the abilities
of an intruder. In this protocol description and intruder spy can
eavesdrop and receive any message from a protocol run. It can
also transmit valid messages to honest agents, given that it is
able to synthesize them.

gets(spy, M, T):-says(A, B, M, T), A!=spy, B!=spy
says(spy, B, M, T):- synth(spy, M, T), B!=spy

 We then define the rules that specify a protocol’s
action. This being a protocol dependant part, we have to
ensure that desirable constraints are imparted on our solution
set. To do this we put the same preconditions to each action in
a protocol run, as assumed in our initial description of the
protocol. We also specify message validation rules, which
enable the agents to proceed in a protocol run, only if a
message or its component has been verified.

says(A,B,encrypt(K, Na, A),T):-

 fresh(Na, T), publicKey(K, B), A!=B

says(B,A,encrypt(K, Na, Na,T):-
 got(B,encrypt(K, Na, A),T), fresh(Nb, T),
 publicKey(K, A), A!=B

says(A,B,encrypt(K, Nb),T):-
 said(A,B,encrypt(K, Na, A),T),
 got(A,encrypt(K, Na, Na,T),
 publicKey(K, B), A!=B

 This completes our background and action theories
for the ALSP specification of the NSPK protocol. In the
coming section we formally verify the protocol with the above
specification and validate security claims earlier proposed by
the protocol.

6

Planning Attacks on the NSPK
 We specify goals using logic programming rules and
execute our specification to see if there exists a model where
the particular goal state is attained. If true, we deduce that the
protocol can be manipulated to attain the security violation
and state declaratively that the protocol is insecure. Similarly
if a model is not generated we claim that the security violation
can not be achieved hence, the protocol is secure. Again, we
incorporate the approach as suggested in [6, 10] to specify our
goals in ALSP. For example, a logic programming rule
‘attack1’ representing a state when an adversary has attained a
sessions key by manipulating a protocol run could be written
as:

attack1(T):-
 got(B,encrypt(Kb,Na),T),
 said(B,A,encrypt(Ka,Na,Nb),T),
 got(B,encrypt(Kb,Nb),T),
 not said(A,B, encrypt(Kb,Na),T),
 not said(A,B, encrypt(Kb,Nb),T), A!=spy,
 B!=spy.
Result Set:
C:>lparse nspk.lp attack1.lp | smodels
smodels version 2.26. Reading...done
Answer: 1
True
Duration 109.827
Number of choice points: 208
Number of wrong choices: 24
Number of atoms: 125348
Number of rules: 1040351
Number of picked atoms: 254233
Number of forced atoms: 436
Number of truth assignments: 40149094
Size of searchspace (removed): 752 (221)

The model generated corresponds to that suggested in section
III for Lowe’s [4] attack on NSPK.

C. THE SEQUENTIAL PROGRAMMING APPROACH
CSP (Communicating Sequential Process) is a process algebra
notation, for analysis of interaction between two or more
processes, or between a process and its external environment
[15, 16]. It allows a system to be described at any level of
abstraction. FDR (Failure Divergence Refinement) [27] is a
model checking tool based upon CSP theory for concurrent
processes. FDR takes the system specification and
implementation of a protocol in CSP script as input and
produces a counterexample as output, if the implementation
doesn't meet the given specification. FDR uses the technique
of searching the state space to find any insecure sequences of
messages that can occur leading to an attack on the protocol.
Thus, FDR can only be used for finite systems. Gavin
Lowe[4] used CSP and FDR to break and fix the Needham-
Schroeder authentication protocol.

 In order to model a protocol in CSP, each entity
participating in the protocol is represented as a CSP process
which communicate over channels. An intruder that can
interact with the protocol is also modeled as a CSP process.
Conventionally, the channel’s names are of the form
x(in/out)y, where in/out refers to the direction (relative to x),

and y is the other party of the communication. For details on
the most frequently used notations, please refer Table 1. For
the complete list, refer [15, 16].

Analysis of Needham Schroeder Protocol using CSP and
FDR:
An agent can either act as initiator (Send) or responder (Resp)
of the protocol.

User(id,ns) = if ns == <> then STOP else

 Send(id,ns) [] Resp(id,ns)

 The initiator agent chooses the agent with whom it
wants to establish a session and then communicates the three
messages of the NSPK protocol with it. After the three
messages, the initiator enters a state wherein a session is
established between the two parties. Similarly, the responder
performs the three messages.

Send(id,ns) = |~| a:diff(agents,{id}) @
comm.id.a.pke(pk(a),Sq.<head(ns),id>) ->
([] n:nonces @

comm.a.id.pke(pk(id),Sq.<n,head(ns)>) ->
 comm.id.a.pke(pk(a),n) ->
 Session(id,a,n,tail(ns)))

Resp(id,ns) = [] a:diff(agents,{id}) @
 [] n:nonces @
 comm.a.id.pke(pk(id),Sq.<n,a>) ->

comm.id.a.pke(pk(a),Sq.<head(ns),n>) ->
 comm.a.id.pke(pk(id),head(ns))
->Session(id,a,head(ns),tail(ns))

The set of messages are specified as follows. Here message4 is
included to check for secrecy of nonces.

message1 = {pke(k,Sq.<n,a>) | k <- publickey, n <-
nonces, a <- agents}
comm1 = {a.b.m | m <- message1, a<-agents, b<-
agents, a!=b}
message2 = {pke(k,Sq.<n,n'>) | k <- publickey, n <-
nonces, n' <- nonces}
comm2 = {a.b.m | m <- message2, a<-agents, b<-
agents, a!=b}
message3 = {pke(k,n) | k <- publickey, n <- nonces}
comm3 = {a.b.m | m <- message3, a<-agents, b<-
agents, a!=b}
message4 = {encrypt(n,m) | n <- nonces, m <-
wholemess}
comm4 = {a.b.m | m <- message4, a<-agents, b<-
agents, a!=b}

 An intruder can listen to messages between Alice and
Bob, can interact with them, and can even intercept and fake
messages. An intruder can also deduce facts to build
messages. A deduction is a pair (X, a) where X is a finite set
of facts and a is a fact which can be constructed using X. The
three deductions rules – for sequencing, symmetric keys, and
asymmetric keys – are specified as:

deductions1(X) = {({Sq . m}, nth(j,m)) ,
({nth(i,m) | i <-{0..#m-1}}, Sq . m) |
Sq.m <- X, j<-{0..#m-1}}

7

Terms Notation Description
Process and Event P = a->Q process P performs event a and then behaves like process Q
External/Deterministic Choice a->P [] b->Q a process which can either perform event a and then behave like P, or perform event

b and then behave like Q, according to whichever event (a or b) is first recorded
Internal/Nondeterministic
Choice

a->P |~| b->Q Same as external choice except the decision of choice is internal to the process and
ambiguous to the environment

Input c ? x inputs value x from channel c
Output c ! x outputs value x on channel c
Concurrency P [|X|] Q processes P and Q synchronize on all events in X
Interleaving P [|{}|] Q processes P and Q run completely independent of each other
Indexed External Choice []x:Z @ x->P Equivalent to a->P [] b->P [] c->P for Z = {a, b, c}

(similarly Indexed Internal Choice is defined)
Communication comm.v value v of the message is communicated on channel comm
Special Processes STOP does nothing, represents a deadlock

SKIP represents successful termination
TABLE 4

TERMS AND NOTATIONS USED IN CSP SPECIFICATION OF NSPK

deductions2(X) = {({m, k}, encrypt(k,m)) ,
({encrypt(k,m), k}, m) |
Encrypt.(k,m) <- X}

deductions3(X) = {({m, k}, pke(k,m)) ,
({pke(k,m), dual(k)}, m) |
PK.(k,m) <- X}

 The protocol goals – after a successful run of the
protocol, the intruder should not possess secret nonces and a
session is established between the communicating parties – are
also specified as part of the CSP file. This file is given as input
to the FDR which shows the Lowe’s attack. For the complete
code, please refer [16] and [17].

Casper:
 Modeling in CSP has been proven to be tedious and
error prone. Producing a CSP description of a protocol is very
time-consuming, and also demands expertise in CSP. Casper
[26], a modeling tool, was built by Lowe to generate the CSP
code of a protocol from a more abstract description of it. The
auto-generated CSP code by Casper can then be used for
checking using FDR. Casper input file consists of two major
parts – a generic definition of the way in which the protocol
operates and a definition of the actual system to be checked.
Each part contains several subsections like Free Variables,
Intruder Information, Protocol Description, Specification,
System, etc. with the line beginning with ‘#’.
 In Casper, the sequence of messages for the Needham
Schroeder protocol is defined as below. Message 0 says the
environment sends the identity of B to A, implying A is the
initiator of the protocol with B as responder.
#Protocol description
0. -> A : B
1. A -> B : {na, A}{PK(B)}
2. B -> A : {na, nb}{PK(A)}
3. A -> B : {nb}{PK(B)}

The goal to be achieved by the protocol is specified as:
#Specification
Secret(A, na, [B])
Secret(B, nb, [A])
Agreement(A,B,[na,nb])
Agreement(B,A,[na,nb])
Please refer [17] for the complete code.

D. THE BAN LOGIC APPROACH
BAN logic was proposed by Mike Burrows, Martín Abadí,
Roger Needham in [22]. It allows the assumptions and goals
of a protocol to be stated abstractly in belief logic. According
to it messages send by any user contains his beliefs. It defines
the rules which state which govern how the belief state is
updated on receiving any message. For a successful run of the
protocol the belief state of communicating parties should
contain the protocol goals.

TABLE 5
NOTATION IN BAN LOGIC FOR NSPK PROOF

 Kab
P↔Q

K is a good key for communication between participants P
and Q.

#(Np) Nonce value Np is fresh and hence valid.
P|~X P once said X.
P |≡ X P believes in X.
P|⇒X P has jurisdiction over X.
P X P sees X.
X
Y If a participant believes in X then he/she believes in Y too.

BASIC RULES
• Message Meaning Rule

• Nonce Verification Rule

• Jurisdiction Rule

Needham-Schroeder Protocol Analysis: The original
NSPK protocol without the idealisation has been discussed in
section III. Corresponding idealised protocol from message 2
is as follows:

PROTOCOL AIM:
 The aim of NSPK protocol is that the participants
believe that they share a common secret Kab and also each

8

participant should believe that the other participant also
believe the same.
IDEALISED PROTOCOL:
 Kab Kab Kab
2. S → A: {Na, (A ↔ B), # (A ↔ B), {A ↔ B}Kbs} Kas

 Kab
3. A → B:{A ↔ B}Kbs
 Kab
4. B → A:{Nb, (A ↔ B)}Kab from B
 Kab
5. A → B:{Nb, (A ↔ B)}Kab from A

ASSUMPTIONS:
 Kas Kbs
1. A |≡ A ↔ S; B |≡ B ↔ S
 Kas Kbs Kab
2. S |≡ A ↔ S; S |≡ B ↔ S; S |≡ A ↔ B
 Kab
3. A |≡ (S |⇒ A ↔ B)
 Kab
4. B |≡ (S |⇒ A ↔ B)
 Kab
5. A |≡ (S |⇒ #(A ↔ B))
6. A |≡ #(Na); B |≡ #(Nb)
 Kab
7. S |≡ #(A ↔ B);
 Kab
8. B |≡ #(A ↔ B)

PROOF:
We will now use the assumptions and logical postulates and
apply them to each message. With the help of message (2) and
assumption (1) we can derive that.
 Kab Kab Kab
A {Na, (A ↔ B), #(A ↔ B), {A ↔ B}Kbs}Kas – (1)
Using this and applying the logical postulate – message
meaning rule we can say:
 Kab Kab Kab
A |≡ S |~ {Na, (A ↔ B), #(A ↔ B), {A ↔ B}Kbs} – (2)
Now we use assumption (6) and apply freshness rule:
 Kab Kab Kab
A|≡ # {Na, (A ↔ B), #(A ↔ B), {A ↔ B}Kbs}Kas – (3)
Using (1), (2) and (3) and applying nonce verification rule we
get:
 Kab Kab
A |≡ S |≡ (A ↔ B) and A |≡ S |≡ #(A ↔ B)
Using assumptions (3, 5) we apply the jurisdiction rule to
finally get:
 Kab Kab
A |≡ (A ↔ B) and A |≡ #(A ↔ B) - R1
Now we move on to message (3) and apply logical postulates
with the help of our assumptions.
 Kab
B {A ↔ B}Kbs
Applying the message meaning rule we can derive:

 Kab
 B |≡ S |~ {A ↔ B}Kbs
Using assumption (8) we apply nonce verification rule and
get:
 Kab
B |≡ S |≡ {A ↔ B}

Using assumption(4) and applying jurisdiction rule we get:
Kab

B |≡ {A ↔ B} - R2
For message (4) we use the previously derived result (R1) and
apply message meaning rule to get:
 Kab
A |≡ B |~ { (A ↔ B)} – (4)
Again using (R1) and (4) we apply nonce verification rule to
get our protocol aim.
 Kab Kab
 A |≡ B |≡ (A ↔ B) and B |≡ A|≡ (A ↔ B) - R3
 This protocol has an extra assumption, which is that
B assumes the key B receives from A is fresh (assumption 8).
So Needham-Schroeder protocol had this flaw in it.
In this context although B sends Nb encrypted with Ka, the
assumption is not valid because any adversary is able to trick
A into decrypting B’s message. This weakness was exploited
by Lowe in his attack.

 Kab
B |≡ #(A ↔ B)

V. QUALITATIVE COMPARISON OF FORMAL APPROACHES
The most important feature of approaches under the logical
inference domain is its independence from automated support.
They rely primarily on the assumptions taken before the
analysis of a protocol and capture the notion of validity of data
items such as nonce and session keys. Strand Spaces captures
this notion with the help of two partial orderings, namely
subterm and preceq [24]. The ease of usage of Strand Spaces
over the BAN logic makes the former more user-friendly.

TABLE 6

COMPARING THE TWO LOGICAL INFERENCE APPROACHES
BAN LOGIC STRAND SPACES

BAN logic does not allow
modeling of capabilities of
system penetrator explicitly.

Strand Spaces model captures all
the possible adversary behaviour
independent of the protocol
being analyzed. Thus all the
capabilities and limitations of the
adversary is taken under
consideration beforehand

BAN logic analyses the protocol,
one message at a time.

Strand Spaces analyses all the
messages received by a party
together, using strands.

BAN logic is not very reliable
for the verification of security
protocols, since it proved
insecure protocols like NSPK
and Ottway-Rees protocol [28]
secure.

Strand Spaces on the other hand
is able to detect flaws in the
mentioned protocols.

 Both the logic programming and the sequential
programming approaches are capable of verifying the NSPK
protocol for Lowe’s attack. An advantage of using ALSP and
CSP over inference logic approaches is that these specification
languages allow a system to be described at any level of
abstraction. It is also worthwhile to state that, the development
of a protocol specification in ALSP is notably easier than in
CSP. The latter incorporates far typical syntaxes as compared
to the former.

9

TABLE 7
COMPARING THE TWO MODEL CHECKING APPROACHES

CSP/FDR ALSP
FDR used with Casper allows
generating the attacking run
corresponding to prospective
security flaws.

ALSP specification when
executed on the smodels model
finder generates a protocol trace
corresponding to security
violations. Often, the generation
of an attacking run from the trace
itself proves to be a tedious task.

Complex security properties like
atomicity & fairness can easily
be specified using sequential
programming.

Specification of such properties
using the logic programming
approach is yet to be explored.

Casper enables a protocol
designer to specify the protocol
in the prevalent Alice-Bob
notation. This considerably
reduces the time and efforts
employed in the protocol
verification.

Tools to generate the ALSP code
of a protocol from a more
abstract description of it is not
yet been designed. Thus, the
development of a specification in
ALSP is more time consuming.

FDR cannot deal with infinite
state systems. Thus, CSP cannot
check any arbitrary protocol.

The semantics for protocol
specification in ALSP ensures
that the specification is
admissible. Therefore, a case of
an infinite state system is out
rightly rejected.

VI. FUTURE WORK
Our intention of future work includes identifying common
parameters like computational costs, for comparison of
different formal approaches for verification. We would also
extend our work by qualitatively comparing other approaches
like GNY Logic, Scyther, Murphy and AVISPA.

VII. CONCLUSION
We are able to identify and compare the basic limitations and
advantages of using various formal verification approaches for
security protocol analysis. This enables us to choose a suitable
verification approach catering to a particular given scenario.
For example, in absence of any automated support, we can use
a logical inference over other model checking approaches. For
infinite state systems, ALSP is preferred over CSP. As far as
ease of usage is concerned Casper scores over others. BAN
logic is not a preferred approach as it has been proven to give
false result for few protocols. To capture complex goals
required for fair exchange protocols, CSP and Strand Spaces
offer a suitable solution.

VIII. REFERENCES
[1] P. Bjesse. What is Formal Verification? ACM SIGDA Newsletter. Vol. 35.
Issue 24. ACM New York. 2005.
[2] E.M. Clarke. Model Checking. O Grumberg, DA Peled - 1999 – Springer
[3] R. Needham and M. Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12): p.993-
999, 1978.
[4] G. Lowe. Breaking and fixing the Needham-Schroeder Public-Key
Protocol using FDR. Lecture Notes on Computer Science. Vol. 1055. p. 147-
166. 1996.
[5] L. Carlucci Aiello and F. Massacci. An Executable Specification
Language for planning attacks for security protocols. In P. Syyerson editor.

IEEE Computer Security Foundation Workshop, pages 88-103. IEEE
Computer Society Press. 2000.
[6] L. Carlucci Aiello and F. Massacci. Planning Attacks to security protocol:
Case Studies in logic programming. Lecture Notes in Computer Science; Vol.
2407. p. 533-560. Springer Verlag Press. 2002.
[7] Michael Codish, Maurice Bruynooghe, Maria J. García de la Banda,
Manuel V. Hermenegildo. Exploiting Goal Independence in the Analysis of
Logic. Programs. Journal of Logic Programming. Vol 32. p.247-261,
Amsterdam,1990.
[8] K. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science. Elsevier Science, 1990.
[9] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic
Programming. In the Fifth International Conference on Logic Programming
(ICLP‟88), p. 1070–1080. MIT-Press, 1988.
[10] L. Carlucci Aiello and F. Massacci. Verifying Security Protocols as
planning in Logic Programming. ACM Transactions on Computational Logic.
Vol. 2, No. 4, p. 542-580. 2001.
[11] I. Niemel¨a. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial
Intelligence,Vol. 25 no.3-4: p. 241– 273, 1999.
[12] T. Syrj¨anen. Implementation of local grounding for logic programs with
stable model semantics. Technical Report B18, Helsinky Univ. of
Technology, 1998.
[13] F. Massacci. Breaking Security Protocols as an AI Planning Problem. In
4th European Conference on Planning: Recent Advances in AI planning. Vol
1348. P. 286 - 298. 1997
[14] C.Meadows. Analyzing the Needham-Schroeder public key protocol: A
comparison of two approaches. In Proc. of ESORICS-96, LNCS 1146, p 351–
364. Springer-Verlag, 1996.
[15] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall
International, 1985.
[16] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall
(Pearson), 2005.
[17] Code for CSP specification of NSPK. Html Document,
http://web2.comlab.ox.ac.uk/oucl/publications/books/concurrency/examples/b
ookexamples/chapter15/nspk.csp. Retreived on: 20/2/09.
[18] Gavin Lowe, Philippa Broadfoot and Mei Lin Hui. A Compiler for the
Analysis of Security Protocols. User Manual and Tutorial.
web.syr.edu/~bpadmana/Casper-Manual_bala.pdf. Retreived on: 20/02/09.
[19] Meadows,C. Formal methods for cryptographic protocol analysis:
emerging issues and trends. Selected Areas in Communications, IEEE Journal
on On page(s): 44- 54, Volume: 21, Issue: 1, Jan 2003.
[20]Yi Deng; Jiacun Wang; Tsai, J.J.P.; Beznosov, K. An approach for
modeling and analysis of security system architectures,
Knowledge and Data Engineering, IEEE Transactions on
On page(s): 1099- 1119, Volume: 15, Issue: 5, Sept.-Oct. 2003
[21]R.A. Kemmerer. Analyzing encryption protocols using formal verification
techniques. IEEE Journal on Selected Areas in Communication. Vol. 7.
pages. 448-457. 1989.
[22]Michael Burrows, Mart Abadi, Roger Needham. A logic of
authentication. ACM Transactions on Computer Systems. Vol. 8. pages 18-
36. 1990.
[23] David Monniaux. Decision procedures for the analysis of cryptographic
protocols by logics of belief. In 12th Computer Security Foundations
Workshop. IEEE. pages 44—54.1999.
[24] Fábrega, F., J., T., Herzog, J., C., Guttman, J., D. “Strand Spaces: Why is
a Security Protocol Correct”, IEEE Symposium, 1998.
[25] I. Niemel¨a and P. Simmons. Smodels – an implementation of Stable
Model and Well-founded Semantics for Normal Logic Programs. In Fourth
International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’97), volume 1265 of Lecture Notes in Artificial
Intelligence, p. 420– 429. Springer-Verlag, 1997.
[26]Gavin Lowe. A compiler for the analysis of security protocols. Journal of
Computer Security. Pages. 53-84. Society Press. 1997.
[27] Failures-Divergence Refinement: FDR2 User Manual. Formal Systems
(Europe) Ltd. www.fsel.com/documentation/fdr2/html/fdr2manual_toc.html.
Retreived on: 20/2/09.
[28] Colin Boyd and Wenbo Mao. On a Limitation of BAN Logic. Pages.
240-247,Springer-Verlag, 1993.

